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Abstract

Systems code is challenging to verify, because it uses con-
structs (like raw pointers, pointer arithmetic, and bit twid-
dling) that are hard for tools to reason about. Existing ap-
proaches either sacrifice programmer friendliness, by de-
manding significant manual effort and verification expertise,
or generality, by restricting the programming language or
requiring that the code adapt to the verification tool.

We identify a new point in the design space of verifiers
that enables a different set of trade-offs, which prove practi-
cal in the context of verifying critical system components.
We use several novel techniques to develop the TPot ver-
ification framework, targeted specifically at systems code
written in C. With TPot, developers verify critical compo-
nents they implement in standard, unrestricted C, using a
C-based language to write “proof-oriented tests” (POTs) that
specify the desired behavior. TPot then runs the POTs to
prove correctness. We evaluate TPot on 6 different systems-
code bases, and show that it can verify them at the same level
as 4 state-of-the-art verifiers, while consistently reducing
the annotation burden, ranging up to more than 3x. TPot
does not require these code bases to be adapted for verifica-
tion and achieves verification times compatible with typical
continuous-integration workflows.

TPot is open-source and freely available at https://github.
com/dslab-epfl/tpot.

1 Introduction

Formally proving that “correct” code is indeed correct entails
significant developer effort. Doing this for systems code writ-
ten in C is even harder, due to low-level programming idioms
that are difficult to reason about formally and automatically.
This effort impacts developers’ short-term productivity and
so deters them from using formal methods to demonstrate
that code they already believe to be correct is indeed so. Not
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surprisingly, there are but a few examples of real systems
whose entire C implementation has been formally proven to
be correct. Yet, in practice, only some parts of the system are
truly critical, so it is pragmatic and sensible to limit one’s
ambition of proving correctness formally for just these com-
ponents. For example, a cryptographic library is critical to
every networked system, so the effort invested in formally
proving the correctness of HACL* [73] is justified. In our
work, we therefore aim to prove the correctness of critical
components of systems, not entire systems.

One of the greatest impediments to proving code for-
mally is the human assistance required by verification
tools [7, 20, 32, 38, 51]. Provers like Coq [5], Isabelle [52],
or Lean [22] are interactive, meaning that the developer
iteratively provides instructions to the verifier for how to
piece together the correctness proof. This can take several
person-years for reasonably sized code bases [36, 73]. Our
goal is to enable developers to prove the correctness of
correct code in one go, without interaction. Other types
of verifiers rely on programmers to annotate the code with
formal comments that describe the logic and its alignment
with the specifications to be proven [34, 39, 61]. These typi-
cally take the form of pre-/post-conditions for public APIs
and all internal methods plus various proof hints, like invari-
ants. They help the verifier understand the code and cross
reasoning gaps it couldn’t on its own, around function calls,
recursion, and loops. Annotations are in some sense a way of
constructing a proof. While we cannot eliminate all need for
annotations, we do aim to reduce the annotation burden.

One way to reduce this burden is to forgo the use of C
and employ languages better suited for automated reasoning,.
Unfortunately this presents three problems: First, it requires
connecting the code to the verifier, either by rewriting it from
scratch [15, 16, 33], by building a model of it, or by importing
it into a verifier. For example, Perennial [11, 14] supports Go
code by translating it to Coq for verification. This, in turn,
requires the practitioner to learn new languages merely to
prove the correctness of code that she already believes to be
correct. Second, it introduces new risks, because the rewrit-
ten software or model may deviate from the original in subtle
ways not captured by the specification, and linking errors at
verified/unverified boundaries are more likely if the verified
code is written in a language different from the unverified
code [26]. Third, language choice impacts performance, and
that often forces mutual exclusion between what is veri-
fied and what runs fast. Often, the result is that there is a
verified version and a production version meant for actual
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use, with the latter being fast enough but not verified [33].
Our goal is to not require system programmers to learn
verification-specific languages.

A compromise approach is to stick with C but restrict how
it is used and/or restrict the design itself. First, using subsets
of C [4, 20] avoids certain constructs that are verification-
hostile, such as untyped pointers, pointer arithmetic, or ex-
plicit memory management. For example, Vigor [70] pro-
hibits a number of C constructs from the code that is au-
tomatically verified. We want developers to be able to use
all of standard C. Second, systems code often needs to be
designed and implemented differently if it is to be verified
automatically. To verify Komodo [25], Serval [49] replaced
all pointers with indices into global arrays and removed
virtual-to-physical address translation, to avoid the complex-
ity of page walks. CertiKOS [28] likewise removed support
for memory reclamation. The Hyperkernel [48] required sys-
tem call implementation to avoid unbounded loops. Beyond
the initial coding, adding a new property to be proven can
also impose a rethink of the design and implementation [33].
We want developers to be able to write and evolve code
without having to tailor it to the verifier.

A new set of trade-offs is afforded by modern development
environments in which system software is developed in C,
the code is thoroughly tested using continuous integration
(CI), and only the critical components are formally verified.
We identify this new design point and develop several novel
techniques with which we augment the KLEE symbolic ex-
ecutor [8] to obtain a verification framework we call TPot.

To reduce programmer effort, TPot extends automated
verification from the function level to the component level.
Existing solver-aided verifiers [34, 39, 49, 57] are designed,
or encourage their users, to keep the reasoning gaps that
an SMT solver needs to cross as small as possible, aiming
to ensure predictable response times for verification [46].
The common wisdom is that widening these gaps gives rise
to solver queries that do not terminate (“solver explosion”).
Therefore, systems are verified one function at a time and
data structure predicates are manually hidden or revealed,
minimizing the context exposed to the solver. We show how,
in the context of systems code, it is possible to achieve more
solver-aided automation while avoiding common causes of
solver explosion. We keep the logic powerful enough to
reason about systems code, but the conventions of our target
domain allow us to take logic shortcuts that make verification
significantly more predictable.

Scaling to the verification of full systems that are larger
than a typical component is out of scope for TPot. While we
mitigate solver explosion, we inherit the path explosion prob-
lem from traditional symbolic execution. The latter does not
make component-level verification intractable, but presents
a scalability bottleneck. Moreover, we target only sequen-
tial systems code for now, and so TPot does not support
multi-threaded code.

We make the following three contributions:

@ A bespoke SMT encoding of properties over system
components, tuned for systems code. Existing verifiers use
typed memory models that lead them to either require pro-
grammers to explicitly write lemmas (e.g., for type cast-
ing [34]), or they outright do not support untyped point-
ers, pointer arithmetic, integer—pointer type casts, bit-
twiddling, etc. (e.g., Serval [49] does not support casting in-
tegers to pointers, which puts features like page-table walks
out of reach). We extend KLEE’s byte-level memory model
with a symbolic heap representation where addresses are
integers (instead of bitvectors), and that supports symbolic
base addresses, symbolic object sizes, and lazy object materi-
alization. This allows TPot to use SMT queries to efficiently
resolve symbolic addresses and objects, thus fully automat-
ing most reasoning about pointers and bit-level operations.
As another example, we observe that systems code virtually
never operates on infinite, truly recursive data structures
(e.g., linked lists typically track free elements that reside in
an array of pre-allocated resources, not arbitrary pieces of
memory). We leverage this to encode operations on such data
structures into SMT queries that do not involve quantifiers.
(2 Component-level specifications that allow program-
mers to omit the specification of functions internal to the
component while keeping verification automated. Solver-
aided verifiers [34, 39, 49, 57] require programmers to pro-
vide pre- and post-conditions for each internal function of a
component to verify properties at the component’s interface.
Doing so represents a major fraction of the specification
burden, because formalizing the exact context that each in-
ternal function is expected to be called in is hard. This is
unlike describing externally observable operations at the
component’s API level, which is easy for a developer used
to writing component-level test cases and natural-language
specifications. TPot’s restricted, stable SMT encoding en-
ables aggressive inlining during verification while avoiding
common causes of solver explosion: it predictably increases
solver time, but within the bounds afforded by a CI workflow.
(3 A C-based specification language that is sufficiently
expressive for systems code but still permits automated veri-
fication. As mentioned, the behavior of systems components
can typically be specified using more restricted logics than
those provided by existing general-purpose verifiers. We
therefore extend C with 8 specification primitives for de-
scribing systems-code behavior, while deliberately exclud-
ing recursive predicates and general universal quantification.
The resulting specification language is intuitive for C pro-
grammers, while allowing for SMT encodings that avoid
common causes of solver explosion.

We evaluate TPot on 6 different system-code bases, in-
cluding a pKVM heap allocator [44], the Vigor resource
manager [70], a page table implementation [72], a Linux
device driver [35], and the Komodo security monitor [25].
TPot verifies them with the same strength of guarantees as



4 state-of-the-art verifiers, but without needing to adapt the
implementations to TPot. TPot reduces the annotation bur-
den, up to more than 3x compared to the 4 verifiers, while
flattening the learning curve and achieving typical verifica-
tion times of <1 hour, compatible with CI workflows. With
TPot, developers use sxtandard C to write their code, and an
extension of C to write “proof-oriented tests” (POTs) that
specify the desired behavior of critical components. TPot
then runs the POTs to prove correctness. We envision POTs
evolving out of standard tests, so verification follows nat-
urally once the developer is confident in the quality of the
code.

We now present related work (§2), our approach (§3),
design (§4), evaluation (§5), limitations (§6), and conclu-
sion (§7).

2 Related Work

There are many examples of using formal methods to ver-
ify correctness of systems code, including cryptographic li-
braries [6, 24], transaction libraries [14], key-value stores [7,
30], file systems [13, 15, 16, 33, 74], journaling [12], syn-
chronization primitives [53], and even operating system ker-
nels [28, 36, 48] and hypervisors [38, 47, 66, 67].

Decades of research have led to a rich design space involv-
ing trade-offs along multiple dimensions: proof effort (i.e.,
the degree of proof automation), learning curve (i.e., the ease
of learning and applying the verification approach), expres-
siveness (i.e., richness of properties that can be verified), size
of the TCB, verification performance (i.e., how long verifi-
cation takes), and generality (i.e., how broadly applicable
the verification tool is). This section identifies the unique
and useful point that TPot occupies in this design space by
contrasting it with prior work. We structure our discussion
around the degree of proof automation.

2.1 Interactive Verification

Interactive theorem provers. At one end of the spectrum
are general-purpose interactive theorem provers (e.g., Coq [5]
and Isabelle [52]). They involve the lowest degree of built-in
proof automation. With this approach, developers interact
with the theorem prover to write proofs as detailed sequences
of steps, separately from the code.

One of the most notable achievements with this approach
is the seL4 project [36], which is the first to demonstrate the
possibility of proving the functional correctness of a general-
purpose operating system kernel. The seL4 kernel consists of
~8,700 lines of C code and is verified using the Isabelle [52]
theorem prover. CertiKOS [27, 28] showed the feasibility of
proving the functional correctness of a concurrent operating
system kernel.

A significant advantage of interactive theorem provers is
flexibility: they enable users to reason about arbitrary lan-
guages, semantics, and program properties (e.g., functional

correctness, termination) and hyperproperties (e.g., nonin-
terference, availability). Another advantage shared by many
interactive theorem provers is a minimal TCB, with the main
tool producing proofs that can be independently checked by
a much smaller kernel of hundreds to thousands of LOC.

Disadvantages of interactive theorem proving include high
human effort and a steep learning curve, both of which TPot
is designed to reduce. Most systems-verification frameworks
built on top of interactive theorem provers [4] require pro-
grammers to supply detailed proofs in powerful and often
custom logics. While this methodology enables proofs of
complex properties beyond the capabilities of automated
verifiers, it incurs a high proof cost that is only partially
remedied by framework-specific proof automation tactics.
For example, verifying seL4 [36] (~8,700 LOC) required a
team of verification experts and took 11 person-years. The
steep learning curve is the flip side of flexibility: complex log-
ics and powerful (functional) languages are both far outside
the expertise of ordinary systems programmers.

Semi-automated verifiers. To reduce human effort, semi-
automated verifiers [2, 3, 20, 34, 39, 57, 61] offload most
reasoning to a powerful solver (typically SMT). Unlike in
interactive theorem proving, where programmers guide the
proof at the logic level, programmers guide semi-automated
verifiers by inserting logic annotations in their code. These
annotations define specifications (e.g., pre-/post-conditions)
and provide proof hints (e.g., loop invariants). Afterward,
the verifier automatically generates proof obligations from
the annotated code and discharges them with a solver.

Pioneering efforts in this space include the Hyper-V hy-
pervisor [38], verified using VCC [20], and the Ironclad
project [32], which fully verifies the functional correctness
of a complete software stack, including the operating system,
cryptographic libraries, and sample applications.

Compared to interactive theorem proving, semi-
automated verification typically requires less manual effort.
As an example, the Ironclad project took 3 person-years to
verify ~6,500 lines of code [32]. Semi-automated verifiers
also have a flatter learning curve: users write annotations at
code level to guide the verifier instead of writing proofs. Still,
learning to use a semi-automated verifier is not trivial: one
needs to learn the annotation language, the underlying logic,
how to write specifications for both public and internal
functions, how to find correct and sufficient invariants and
intermediate assertions, and sometimes even the internals
of the verifier, to understand why verification fails.

2.2 Automated Verification

At the other end of the spectrum are fully automated verifiers,
offering the highest possible degree of proof automation:
complete elimination. In such systems, users only need to
write specifications for public APIs.

With systems software, achieving such a degree of automa-
tion often requires significant restrictions in expressivity (i.e.,



int a, b;

// -- Global invariant --

1 1
2 // -- Internal functions -- 2 bool inv__sum_zero() {

3 void increment(int *p) {*p = *p + 1;} 3 return a + b == 0;

4 void decrement(int *p) {*p = *p - 1; 4 }

5 // -- Initializer -- 5 // -- Proof-oriented tests --
6 void init() { 6 void spec__transfer() {

7 a=0; 7 int old_a = a, old_b = b;
8 b = 0; 8 transfer();

9 } 9 assert(a == old_a + 1);

10 // -- API functions -- 10 assert(b == old_b - 1);

11 void transfer() { 11}

increment (&a);
decrement (&b) ;
}
int get_sum() {return a + b;}

(a) System implementation.

void spec__get_sum() {
int res = get_sum(Q);
assert(res == 0);

(b) TPot specification.

void spec__increment() {

1
2 any(int *, p);

3 assume(p == &a || p == &b);
4 int old_a = a, old_b = b;

5

6 increment (p);

7

8 if (p == &a) {

9 assert(a == old_a + 1);
10 assert(b == old_b);

11 } else if (p == &b) {

12 assert(a == old_a);

13 assert(b == old_b + 1);
14 }

15 }

(c) Hypothetical specification of increment (not required).

Figure 1. (a) Implementation and (b) TPot specification of a toy system maintaining two integers whose sum is zero. inv__sum_zero states a
global invariant that holds after initialization and each API function execution. spec__get_sum and spec__transfer specify API functions.
(c) is a hypothetical internal function specification, which is not required by TPot to verify the API functions. It states, for instance, that the
pointer argument to increment must equal either &a or &b, as the function would not be memory safe otherwise. TPot inlines increment

while verifying spec__transfer, where the context readily implies this precondition.

Theorem Semi-automated Automated

provers verifiers verifiers TPot
Manual effort High Medium Medium Low
Learning curve High Medium Low Low
Expressiveness High Medium Low Low
Generality High High Low Medium
Verification time Low Low Low Medium

Table 1. Main trade-offs in systems-software verification.

only certain properties can be verified) and flexibility (i.e.,
only certain code patterns are supported): the verifier has
to be designed for a specific domain, and the code has to be
written with the verifier in mind. For example, automated
verifiers typically require the interfaces of system compo-
nents to be finite, so that all loops in the implementation are
statically bounded [48, 70]. Similarly, they commonly impose
severe limits on language features (e.g., disallowing pointer
arithmetic [70] and dynamic memory management [48]) to
simplify the verification.

Automated verification has shown success in various do-
mains, including file systems [63], network functions [56, 70],
compilers [68], and even operating system kernels [48, 49].
Some prior work constructs individual verified systems [48],
while others offer programming frameworks [63, 70], each of
which builds a specific class of components that are amenable
to automated verification.

The key drawback of this approach is that the manual
effort essentially shifts from writing proofs to writing code
in the way that the verifier needs it to be. It may not be easy to
make an input program align with an automated verifier. As
a result, effort that would have been invested writing proofs
or logical annotations in the interactive setting may end up
being invested at code development time, thus incurring a
different kind of verification effort. In contrast, TPot does
not impose any rules on how to write C code.

2.3 TPot: A New Point in the Design Space

We identify a different set of trade-offs that are well-suited for
systems code in a modern development setting. TPot requires
much less manual effort than existing approaches. Compared
to interactive provers, TPot trades lots of expressiveness and
some generality for a flatter learning curve, while remaining
more expressive and general than automated verifiers. The
price to pay is verification time: it is higher with TPot than
with prior approaches, but still suitable for CI integration.
Table 1 summarizes our discussion.

3 TPot Approach

With TPot, we aim to address the needs of real-world system
development. This section presents proof-oriented testing,
our approach to doing so. First, we illustrate proof-oriented
testing in a simple TPot specification, then we discuss how
it fits into the normal workflow of a system developer.

3.1 Specifications as Proof-Oriented Tests

TPot specifications are C programs written in a syntax sim-
ilar to test suites. We acknowledge the important role that
testing plays in the delivery of reliable systems; in fact, we
envision verification as a natural evolution from tests to
property-based tests [17] to proofs. Further, reports from ma-
jor industrial outfits, such as Amazon [7, 18, 19, 21, 51, 60],
Facebook [9, 54], and Microsoft [20, 32, 38], repeatedly under-
score the need for verification to be driven by the program-
mers themselves. To reduce the cognitive burden associated
with encoding correctness properties into a different lan-
guage, TPot allows programmers to write specifications and
annotations in the same language as the implementation.
Fig. 1 shows an example TPot specification, consisting
of two proof-oriented tests (POTs) and a global invariant.
POTs specify the main functional correctness properties, and



global invariants help prove their correctness. TPot verifies
the system in two steps. First, it symbolically executes the
initializer followed by the global invariant and ensures that
the latter must return true. Then, TPot symbolically executes
each POT under the assumption that the invariant holds over
the initial system state, proving all assertions. For each POT,
TPot also ensures that the invariant must return true over
the final system state, which concludes an inductive proof.
TPot is built to reduce the amount of intermediate specifi-
cations and proofs the developer needs to provide. It verifies
the system’s public API functions without requiring pre-
/post- conditions for internal methods, by inlining all func-
tion calls during verification. This significantly alleviates the
annotation burden, as it is cumbersome to specify the precise
calling context for internal functions. An example of this is
shown in Fig. 1c. Moreover, TPot does not require proof code
to explicitly fold/unfold global invariants, instead keeping
all invariants visible throughout the verification process.

3.2 Verification as a CI Process

Fig. 2 shows how TPot integrates into the normal workflow
of a system programmer. Developers work on various com-
ponents (indicated by rounded square icons) and follow a
customary code-test-debug cycle independently of TPot for
each one (illustrated at the top of Fig. 2), until they achieve
sufficient confidence in the code’s correctness. Some of these
components (in red) are critical and thus warrant the extra
effort of formally proving their correctness.
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Figure 2. Developer workflow that includes TPot.

For these, the workflow eventually follows a “prove” edge,
illustrated on the left side of Fig. 2: First, for each compo-
nent property that a developer cares to prove, she writes
a POT, typically by evolving one or more existing unit or
integration tests. Next, the developer smoke-tests the POTs
by running them with TPot locally, with a few concrete val-
ues for inputs and small bounds on data-structure sizes and
loop iterations—this verifies some of the paths through the
code and completes in seconds to minutes. She then writes
invariants over loops and global state, as needed to make
the POTs succeed without constraints on inputs and con-
figurations, and pushes the specification to CI. The POTs

TPot primitives TPot primitives

Functional System software

specifications

! ! !

Global invariants

| Clang |
LLVM IR
l SMT queries
7\
| TPot | « SMT Solver
results

Figure 3. TPot’s architecture. The top row of boxes represent inputs
from programmers, blue boxes constitute the TCB.

execute in parallel, and total completion time is determined
by the longest running POT, which takes from minutes to
a couple of hours. TPot’s stable SMT encoding, discussed
in Section 4.3, helps avoid solver explosion even when the
verifier runs for hours.

During the CI run, either all POTs succeed, and so the
corresponding properties hold, or at least one POT fails, so
there is a deep bug in the code or a problem with the prop-
erty. For each failing POT, TPot provides a counterexample
including (1) an initial state that satisfies all invariants and
the failing POT’s assumptions, in the form of an assignment
of values to variables; (2) a legal code path starting at the
beginning of the POT and leading to a violation; and (3) the
resulting violation, which is either an assertion failure or an
ending state failing an invariant, along with the failing path
through the invariant.

The developer first determines whether the starting state
reported by the counterexample is invalid. If so, she strength-
ens the global invariant. For instance, if inv__sum_zero was
omitted from Fig. 1b, running spec__get_sum would result
in an assertion failure at line 14. TPot would then pro-
vide a counterexample consisting of an initial state (e.g.,
(a: 1,b: ®), the failing code path (1b:13,1a:12-13,1b:14),
and the violated assertion (res == 0). The developer expects
only states where a and b are additive inverses to be reach-
able, which makes this state invalid. She adds inv__sum_zero
to encode her intuition in the specification.

If the starting state is valid, the developer debugs the fail-
ure much like a failing classical test case. From counterexam-
ples and POTs, she can construct failing classical tests with
concrete initial states and inputs. This is a straightforward
manual process with our TPot’s current implementation, but
it can be automated using techniques similar to KLEE’s re-
play driver. As the failing classical test is an ordinary binary,
she can fix the problem using ordinary methods (e.g., using
a debugger) independently of TPot. After the fix, thanks to
persistent caching (described in Section 4.4), the next CI run
will only recheck the affected symbolic branches.



Group API

Description

@ any(var_type, var_name)
(2 assume (cond_expr)
(3 assert (cond_expr)

General

Defines a symbolic variable named var_name of type var_type.
Introduces an assumption. Used to express preconditions.
Checks cond_expr. Used to express postconditions.

@ bool points_to(ptr, type, name)

Heap-related (® bool names_obj(ptr, typ)

® bool names_obj_forall(ptr_f, typ)

Returns true if ptr points to an object named name as large as sizeof(typ),false if ptr is null,
dangling, or points to an object with a different name.

Short for points_to(ptr, typ, "ptr"), where "ptr" is a stringification of the first argument.
Takes a pointer-returning function as its first argument. Returns true if for all integers i,

ptr_£(i) is either NULL, or points to an object named "ptr_£f" + str(i).

Universal @ bool forall_elem(arr, cond)

Returns true iff for all elements in array arr, cond holds.

quantification bool names_obj_forall_cond(ptr_f, typ, cond) Returns true iff names_obj_forall(ptr_f, typ) returns true and,
for all non-null values of ptr_£(i), cond(ptr_£(i)) holds.

Table 2. TPot users write POTs and invariants in C augmented with these eight verification-specific primitives.

4 TPot Design

Fig. 3 shows TPot’s architecture. With TPot, developers write,
in C, functional correctness specifications as POTs and in-
variants, using the verification primitives that TPot pro-
vides (§4.1). TPot lowers POTs, global invariants, and the
implementation code into LLVM intermediate representation
(IR), to avoid dealing directly with the complicated semantics
of C [43, 48]. TPot then performs exhaustive symbolic execu-
tion (SE) over each POT, using a custom symbolic executor
based on KLEE [8]. During SE, TPot checks for violations of
conditions asserted by the POT, as well as low-level errors,
like memory safety violations and division by zero.

During verification, TPot uses the Z3 [23] SMT solver to
decide the feasibility of each branch and to enumerate all
possible targets for symbolic pointers. The TCB of a system
component verified with TPot includes TPot itself (which
builds on KLEE), user-written specifications (POTs), Z3, and
the LLVM toolchain.

Unlike push-button verifiers TPot avoids restricting the
implementation language—instead, we introduce a minimal
amount of annotations and interactivity, aiming to strike a
balance between flexibility and automation. TPot extends C
into a specification language for system components, with a
limited logic that is expressive enough to capture properties
of interest while being simple enough to automate. It imple-
ments this specification language using a custom memory
model that supports low-level C idioms common in systems
components. Crucially, TPot employs a bespoke encoding of
the memory model and the specification language into SMT
to avoid common causes of solver explosion [40, 46], and
enable automated tools to bridge wider gaps in reasoning,
with predictable performance.

4.1 TPot’s Specification Language

To enable practical verification for system components,
we pick a middle ground between conventional symbolic-
execution APIs and powerful specification languages offered
by semi-automated verifiers built to verify generic software.
Design goals. First, the specification language should be
familiar to developers without verification expertise, and
they should not have to learn new languages for the purpose
of verification, even if they might need to learn new specifi-
cation primitives. Second, as much as possible, developers

should not have to write intermediate specifications for the
purposes of verification—they should only specify the behav-
ior they are interested in verifying. Last, the specification
language must enable the right combination of expressiveness
and automated reasoning. It should be expressive enough to
specify safety of critical system components and to express
functional-correctness properties of interest. On the other
hand, it should be restrictive enough that properties can be
encoded into SMT in a way that decreases risks of instabil-
ity [40, 46], and avoids common causes of solver explosion.

Language overview. Table 2 summarizes the 8 primitives
with which we extend C. TPot’s specification language ex-
tends a conventional symbolic execution (SE) API with global
invariants, heap primitives, and a restricted form of univer-
sal quantification. The SE primitives (D-3) define symbolic
variables, restrict their values through assumptions, and assert
conditions expressed as C boolean expressions. This style of
specification resembles property-based tests [17], which re-
cent research [7] suggests are acceptable to developers. Using
these primitives, developers express functional correctness
properties as POTs. TPot encapsulates shared properties in
functions, making C functions serve the same purpose as
logical predicates in other C verifiers [3, 34, 38, 57].

Fig. 4 shows an example of a TPot specification.
spec__create_file, a typical POT, defines pre-conditions
using assumptions, invokes the function(s) to be verified,
and checks that the result meets post-conditions. The rest of
this section sheds further light on different aspects of Fig. 4.

Global invariants. To facilitate the specification of stateful
components, TPot includes the notion of global invariants,
which are conditions that are expected to hold over the global
state both before and after each API function execution. TPot
treats any boolean function whose name starts with inv__
as a global invariant (such as inv__owners() in Fig. 4).

Naming. Specifying heap-manipulating programs requires
two facilities missing from conventional SE primitives: mem-
ory safety predicates, and mechanisms to concisely con-
trol aliasing. Interactive verification tools often provide
these facilities through a permission system like dynamic
frames [39, 64], separation logic [59], linear types [42], or
ownership types [37]. Permission systems often require de-
velopers to explicitly manipulate proof state (e.g., fold and



extern struct file *files;
extern unsigned num_files;

1
2
3
4 // Helper functions

5 struct file_perm *perm_ptr_i(int i) {

6 if (i <0 || 1 >= num_files) return NULL;
7 return files[i].permissions;

8}

9 bool owner_valid(struct file_perm* p) {

10 return p->owner != PID_INVALID;

1 3}

12 bool inode_diff_ from(struct file *f, int i, inode_t node) {
13 return f->inode != node

14 }

15 // Global invariant
16 bool inv__owners() {
17 return names_obj(files, struct file[MAX_FILES])

18 && num_files <= MAX_FILES

19 && names_obj_forall_cond(perm_ptr_i,
20 struct file_perm, owner_valid);
21 }

22 // POT that specifies create_file
23 void spec__create_file() {

24 any(inode_t, node);

25 any(pid_t, pid);

26 assume (forall_elem(files, inode_diff_from, node));
27 int idx = create_file(node, pid);

28 if (ddx > 0) {

29 assert(files[idx].inode == node);

30 assert(files[idx].permissions->owner == pid);

31 }

32 }

Figure 4. Example TPot specification for a file manager component,
whose implementation is not shown. The component maintains
an array of file structs, each containing an inode number and a
pointer to a permissions struct. spec__create_file states the main
functional correctness property: given any pid and inode, assum-
ing the latter is not used by an existing file, create_file will run
without low-level errors. If the returned idx is positive, indicating
success, the array element at idx will reflect that pid owns a file
located at inode. inv_owners is a global invariant which specifies (1)
that the global pointer files names an array of file structs, whose
length is MAX_FILES, (2) that the current number of files, is less
than MAX_FILES, and (3) that all elements in files at indices less
than num_files are valid file records, meaning their permissions
pointers name distinct permission structs with valid owners.

unfold predicates), while linear and ownership types restrict
the implementation by disallowing certain forms of aliasing.

TPot instead addresses these needs through a naming-
based abstraction exposed through primitives @-®. These
primitives simplify and automate heap reasoning in the ab-
sence of recursive data structures. This is enabled by a crucial
observation: each block of memory can be identified by a
unique name, or a unique name-index pair. We next motivate
and explain the naming abstraction through an example, then
present a rule for renaming and discuss quantified naming.

Naming example. Figure 5 presents a toy system that main-
tains two dynamically allocated integers whose addresses are
stored in global variables p1 and p2. The system’s initializer

// -- System implementation --
int *pl, *p2;
void init(Q) {
pl = malloc(sizeof(int));
p2 = malloc(sizeof(int));
}
void incr_pl1(Q) { // API function
plt+;
}
10 // -- Specification --
11 void inv__alloc() { // Global invariant
12 return names_obj(pl, int) && names_obj(p2, int);
13}
14 void spec_incr_pl() { // POT specifying incr_pl
15 int old_pl = *pl;
16 int old_p2 = *p2;
17 incr_plQ;
18 assert(*pl == old_pl + 1);
19 assert(*p2 == old_p2);
20 }

O N G R W N e

Figure 5. The implementation and TPot specification of a toy sys-
tem involving dynamic memory allocation.

allocates the integers and its single API function increments
the integer p1 points to. spec_incr_p1 is a POT specifying
the behavior expected of this function.

To understand inv__alloc’s purpose, consider the sce-
nario where it is omitted. Without a global invariant specify-
ing otherwise, pl and p2 can have arbitrary pointer values,
including null or a dangling value. Therefore, dereferencing
either would cause a memory safety error, and so the POT
would fail at line 15. To avoid this, we need a global invariant
stating that p1 and p2 both point to allocated memory.

Now consider a hypothetical primitive called
is_allocated(p, type), specifying precisely that p
points to an allocated block of memory as large as
sizeof(type), and assume that the global invariant was
is_allocated(pl, int) && is_allocated(p2, int). In
this case, the POT would execute without finding a memory
safety error, but it would fail to prove the assertion on line
19. This is because the two pointers may alias, in which case
incrementing *p1 would implicitly increment *p2 as well.

While it is possible to express non-aliasing arithmetically
(pl+sizeof(int)<=p2||pl>=p2+sizeof(int)), this quickly
becomes complicated when many heap objects are in-
volved. Instead, TPot allows concise specifications of
non-aliasing by exposing an abstraction of the heap
where each block of memory carries a name, repre-
sented as a string. points_to(p, type, name) requires p to
point to an allocated block which carries specified name,
and names_obj(p, type) is a convenient shorthand for
points_to(p, type, "p").In the example, inv__alloc re-
quires pl to point to a block named "p1", and p2 to "p2",
implying that the two blocks are distinct.

Renaming. The careful reader may wonder how TPot is
able to prove that init establishes inv__alloc, since the
blocks returned by malloc may carry different names than



"p1" and "p2". TPot enables and automates such proofs by al-
lowing renaming at specification boundaries (i.e., before and
after API function executions). Essentially, all TPot specifica-
tions are existentially quantified with respect to a mapping
between objects and names. In the example, TPot will choose
a renaming that maps the first block to "p1" and the second
to "p2" to prove inv__alloc.

Accounting for renaming, TPot proves the following top-
level theorem for each POT P:

INV(s) = Vs'.s ~p s’ = —error(s’) AINV(s') (A)

where

INV(s) £ (3m. A ino(s,m)) A (B)
o
(Vm.(/\ ino(s,m)) = VI € alloc(s). m[l] #"") (C)
o

We use s ~>p s’ to denote that executing POT P on start-
ing state s produces final state s’. For simplicity, we assume
assertion violations and low-level bugs immediately termi-
nate the POT and produce an error state. The theorem says
(A) that a state satisfying INV only leads to non-error states
that preserve INV. INV says (B) that there exists a mapping
m from memory locations to names under which s satisfies
all user-written invariants, and (C) that all such mappings
map all allocated heap locations in s to non-empty names.

TPot does not directly encode the theorem above into an
SMT query. Instead, it checks B by greedily constructing
satisfying mappings for each symbolic execution path. It
checks C through a per-memory-object check that the global
invariant disallows the empty name.

TPot proves C to ensure the absence of memory leaks.
Leaking objects are those that INV does not explicitly name.
As such, they can be renamed by TPot to the empty name
(""), identifying a leak. To prevent subtle incompleteness
issues, TPot disallows passing "" as an argument to naming
primitives.

Quantified naming. To generalize naming over flat data

structures, TPot offers the names_obj_forall primitive. This
primitive corresponds to the iterated separating conjunction
in separation logic, and allows the specification of (possibly
infinitely) many naming pointers at once. It can describe
structures like arrays of pointers to distinct objects (as in
Fig. 4) or page tables, where each entry potentially contains
a pointer naming a distinct page.
Universal quantification. To keep reasoning about the
specifications automatable, TPot does not support conditions
that are universally quantified over all values of a type. In-
stead, TPot allows universal quantification over memory
regions through primitives (7)) and ®, which TPot’s specifi-
cations can use to quantify properties over all elements in
a collection, e.g., an array. For instance, while one may not
quantify over integers generically in TPot specifications, one
may quantify over all integers in an array.

Developers can use the forall_elem primitive to quan-
tify properties over contiguous blocks of memory and
names_obj_forall_cond to quantify over more flexible
groups of objects described by quantified naming. Impor-
tantly, TPot can encode these properties into SMT queries
that do not involve quantifiers in most cases (§4.3). Re-
stricting quantification on stateful objects in this way also
sidesteps gnarly soundness issues related to allocatedness of
quantified variables [41].

Loop invariants. TPot also supports loop invariants to keep
verification tractable when the implementation includes
loops whose bounds are dynamically determined, or too
large to be unrolled within an acceptable amount of time. By
default, TPot will unroll all loops during symbolic execution
and does not require loops to be annotated.

Features in other C verifiers that TPot does not require
or chooses not to support. To reduce manual effort, the
design of TPot’s specification language depends on two in-
sights specific to verifying systems components that are
contrary to conventional wisdom in semi-automated veri-
fication. We observe that: (1) a large set of critical systems
components can be specified using more restrictive logics
than those found in existing verifiers, and (2) SMT solvers
can be made stable enough to automate reasoning across
function calls while keeping verification practical.

First, TPot does not require specifications for internal func-
tions. Semi-automated verifiers ask the user to provide pre-
and post-conditions for each internal method to ultimately
verify properties of interests at a component’s interface. TPot,
in contrast, effectively inlines all internal functions, and
hence only requires specifications for public API methods.
This alleviates a significant portion of the specification bur-
den: describing the effect and requirements of public API
functions at a component’s interface is relatively easy (these
functions are typically the best documented, tested, and in-
formally specified: developers are used to thinking about
them in detail), whereas understanding specifying internal
functions requires capturing complex behavior that may
involve intermediate states with broken invariants.

In principle, semi-automated verifiers can inline functions,
too. However, this would increase their solver load, risking
solver explosions or noninteractive verification times. The
latter is an issue because, unlike TPot, most verification sys-
tems do not have a way to smoke-test their specifications:
the verifier is often used during development and for debug-
ging. TPot’s restricted, stable SMT encoding ensures that
aggressive inlining does not lead to explosion: it at worst
(predictably) increases verification time. While push-button
verifiers similarly inline functions, in their case avoiding ex-
plosion comes at the cost of restricting their target programs,
such that they are free of code features that could give rise
to complex queries.

Second, TPot only supports a restricted form of universal



quantification, as discussed above. Supporting generic quan-
tification would either require TPot to include quantifiers in
its SMT encoding, thereby almost guaranteeing verification
instability and solver explosion, or ask users to manually
instantiate them, therefore increasing annotation burden.
Perhaps surprisingly, as we show in §5, this design choice
does not severely limit the applicability of TPot in the con-
text of verifying systems components: systems code typically
fits within this framework, and in fact prior formalizations
already use quantifiers in accordance with these restrictions,
without making them explicit.

Third, TPot purposefully excludes recursive predicates
from its specification language, since proofs involving them
require inductive reasoning, which is outside the capability
of current SMT solvers. We argue that this design choice is
justified for specifying systems components. A significant
portion of low-level code operates without the abstraction
of infinite memory, as they either explicitly deal with phys-
ical addresses or operate on pre-allocated buffers for per-
formance reasons. Therefore, their implementations do not
rely on infinite, truly recursive data structures. For instance,
systems code typically uses linked lists to track free elements
in an array of resources, not dynamically allocated pieces of
memory in arbitrary locations. In this case, TPot allows users
to specify such data structures using quantified primitives,
akin to iterated separating conjunctions in separation logic.

Finally, TPot does not support nor require predicate
folding and unfolding, a common primitive in prior semi-
automated verifiers (e.g. open/close in VeriFast and wrap/un-
wrap in VCC). Besides enabling proofs involving recursive
predicates, prior verifiers require folding and unfolding to
simplify path constraints, thereby minimizing the verifica-
tion time. TPot, by default, unfolds all predicates to reduce
the annotation burden.

4.2 Custom Byte Memory Model

Design goals. We design TPot’s memory model to provide
smooth support for various C idioms involving the heap, such
as type casting (especially pointer«<sinteger casting), pointer
arithmetic, bit-packing of pointers, etc., that are widely used
in systems software. However, TPot also must ensure the
verification can finish within our time budget for queries
generated from this memory model.
Overview of the memory model. TPot’s memory model
builds on top of KLEE’s, which represents objects using SMT
arrays of bytes accessed at bounds-checked indices. TPot
extends it with a symbolic heap representation supporting
lazily materialized objects, symbolic base addresses, and sym-
bolic object sizes. Like KLEE, TPot does not distinguish be-
tween pointers and data, and uses SMT queries to resolve
addresses and objects.

TPot employs a byte memory model, eliminating all
higher-level types, thereby automatically reasoning about

low-level C idioms. With this memory model, type casting is
interpreted either as a no-op or as a zero- or sign-extension
of bitvectors. Pointer arithmetic is interpreted precisely in
terms of bitvector arithmetic. §4.3 describes how TPot en-
codes constraints in this memory model into stable queries.
Our memory model separates the heap from global vari-
ables and from the stack. While global variables and stack
objects have concrete base addresses and sizes, heap objects
have symbolic ones. TPot uses additional SMT constraints to
encode that the ranges specified by symbolic base addresses
and object sizes do not overlap. To avoid a quadratic number
of constraints with respect to the number of heap objects,
TPot fixes an ordering of objects in the heap. While TPot
fixes an ordering, it does not constrain the distance between
subsequent objects. Otherwise out-of-bounds accesses to
an object could be unsoundly deemed as safe accesses to
another object. Moreover, an additional level of encoding
indirection (§4.3) ensures that the fixed order of objects does
not unsoundly imply an ordering between pointer values.

Lazy object materialization. TPot’s quantified naming
primitives (§4.1) can imply the existence of a large number of
heap objects, possibly infinitely many. To automate reason-
ing about such conditions, TPot uses a lazy materialization
scheme for memory objects. TPot extends KLEE’s symbolic
state representation with an uninterpreted SMT function
called heap_safe, which takes in an address and returns the
number of bytes that can be safely accessed at that address.
During the interpretation of naming primitives, TPot adds
constraints over heap_safe to ensure the memory safety of
all bytes that are part of named objects. Before resolving
pointers to heap objects, TPot issues SMT queries to check
whether the pointer is heap safe. If so, we resolve it within
the heap and if not, within the stack and global variables.
The latter works exactly as it does in KLEE, iterating over all
objects and issuing SMT queries to find objects the pointer
might fall in and forking a state for each such object. The
former works similarly, except that if we determine that the
pointer may be out of bounds of all objects in the heap, we
fork an additional state in which we allocate a fresh heap
object with symbolic content.

4.3 TPot’s SMT Encoding

Eliminating quantifiers. Universal quantifiers are a com-
mon cause of solver explosion, as they may cause the solver
to discover an arbitrary number of facts that are not useful
for solving the current query. Worse, some combinations of
quantifiers give rise to matching loops [40], compounding
the issue and leading to unpredictable verification times.
To ensure the stability of its SMT encoding, TPot han-
dles most quantifiers without sending quantified queries to
the solver. Specifically, TPot only makes quantified queries
before lazily materializing an object whose existence is im-
plied by a names_obj_forall condition. Normally, memory



resolution queries exclude the quantified memory safety
constraints (over heap_safe) that encode names_obj_forall.
When TPot fails to prove the safety of a memory operation, it
retries the safety check once per such quantified constraint,
including one of them each time. In this way, the impact of
quantifiers on verification performance is controlled: lazily
including quantified constraints in this way makes it likely
that they will be useful in solving the query; each query
is given a single quantifier with triggers picked to avoid
self-loops, so matching loops are avoided; and the process
happens at most once per object, just before instantiation.
TPot instantiates constraints implied by forall_elem and
names_obj_forall_cond primitives without involving the
solver. Instead of putting quantified constraints in the path
condition, these primitives cause TPot to mark the objects
they relate to with a reference to the quantified condition.
Later, when a byte associated with a forall_elem is read,
or when an object identified by a names_obj_forall_cond
is lazily materialized, TPot computes the property over the
specific byte or object and adds it to the path condition.

Converting pointer values, heap addresses, and object
sizes to integers. Since TPot does not distinguish between
pointers and data and supports bit-level operations over both,
it needs to represent pointer values, heap addresses, and ob-
ject sizes as 64-bit vectors. However, we have found that
doing so naively tends to leads to solver explosion in the
form of bit-blasting over these values. When the solver fails
to solve a query involving bitvectors heuristically through
bitvector arithmetic, it tries to discharge the query using
propositional logic, which entails interpreting a 64-bit vec-
tor as 64 independent boolean variables, giving rise to 2%
combinations.

With a naive encoding, bit-blasting happens frequently
during pointer resolution, since heap addresses relate to each
other through bitvector arithmetic. To mitigate this, TPot
converts bitvectors to integers during pointer resolution,
allowing Z3 to use integer arithmetic solvers.

Converting precisely between bitvectors and integers (e.g.
using the bv2int function offered by Z3) is prohibitively
costly for SMT solving and can itself cause instability. In-
stead, TPot approximates the bv2int conversion using an
uninterpreted function tpot_bv2int that assumes overflow-
free semantics and is explicitly axiomatized.

TPot performs the bv2int conversion only during pointer
resolution, where bitvector overflows are impossible. To
make this fact clear to the SMT solver, we supply it with
instantiations of axiom schemas capturing overflow-free
conversion from bitvectors to integers. Figure 6 shows an
example axiom schema for the + operator.

TPot does not give a general, quantified axiom to the SMT
solver. Instead, TPot allows explicit rewrites based on instan-
tiations of the schema, for specific pointers and in only one
context: checking whether a pointer p1 + p2 falls within
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1 (= (tpot_bv2int (bvadd a b))
2 (+ (tpot_bv2int a) (tpot_bv2int b)))

Figure 6. Example axiom schema from the overflow-free semantics
for tpot_bv2int, stating that the result of applying tpot_bv2int
to the bitvector sum of a and b should be equal to the sum of
their integer conversions. TPot soundly instantiates this schema
for specific values of a and b during pointer resolution.

the bounds of an object, i.e., tp2;(base) < tp2i(pl + p2) <
tpoi(base + size), where t3,; denotes tpot_bv2int. TPot lifts
this to checking that tp,;(base) < tpi(pl) + tpoi(p2) <
tpoi(base) + tpy;(size). The lifting is sound in this context:
since all malloc-ed objects must fit in the heap, base + size
may not overflow. Proving the integer sum of p1 and p2 to
be less than that of base and size readily implies that p1 + p2
does not overflow either.

In addition, TPot propagates constraints over bitvectors to
integers. For example, given that a bitvector bv is less than
0x05, the solver cannot deduce that ty,;(bv) is less than the
integer 5. Hence, TPot explicitly adds the corresponding in-
teger constraints, whenever TPot adds a bitvector constraint
to the path condition.

Importantly, the bv2int conversion hides the ordering of
heap objects (§4.2) from client code, as TPot maintains or-
dering constraints only over integer values. For instance,
if TPot decides to have the 4-byte object that p1 points to
come before the object that p2 points to, it will insert the
constraint tp2;(pl) + 4 < £,2i(p2) into the path condition,
but not p1 + 4 < p2. The solver cannot infer the latter from
the former, as it sees tpot_bv2int as an uninterpreted func-
tion, and it is never given the axiom schema instantiation
required to make such a deduction. This prevents client code
from unsoundly relying on an ordering between pointers,
since the bv2int conversion is transparent to client code.

Query simplification. To further stabilize SMT solving,
TPot includes a custom query simplifier. Unlike prior ap-
proaches that simply propagate constants and equalities [8],
TPot’s simplifier performs much more extensive simplifi-
cation, often involving intermediate SMT queries to check
whether certain simplification is possible. While intermedi-
ate queries can impact TPot’s verification time negatively,
they benefit its stability as they may prevent solver explo-
sions in more complex queries. Below, we present two exam-
ples of the types of simplification TPot performs.

Read after write. For expressions of the form
(Read (Write O x j) i), TPot checks if it is possible
to simplify to either (Read O i), or x. To achieve this, TPot
makes SMT queries to check if i is provably equal to or
provably different from j.

Performed naively, this simplification can lead to a prohib-
itive number of queries, as (1) the read-after-write scenario
occurs often and (2) involves reads that span multiple bytes
over objects that have been written multiple times, TPot mit-
igates the associated cost with two techniques. First, TPot



caches simplification proofs: once a simplification is proven
to be sound, it will always be sound for the same symbolic
execution state, regardless of what new conditions have been
added or how many new objects have been created. Second,
instead of making a query per byte written and per byte
read, TPot identifies syntactic structures (e.g. Reads chained
together by Concat expressions, and Writes at adjacent in-
dices), and attempts to simplify over ranges as opposed to
individual byte indices.

Constant offsets. During pointer resolution, if TPot infers
that the difference between a pointer and a base address
must be constant, it caches and reuses this fact to rewrite
byte offsets in later queries. Concretely, while performing a
memory operation (say, a read), after resolving a pointer p
to an object O, TPot will construct an expression of the form
(Read O (Subtract P base_of(0))).If TPot infers that P is
equal to base_of (O) plus some constant, it will substitute P
in the Read, and in all subsequent expressions.

4.4 TPot Prototype

We implemented TPot on top of the KLEE symbolic execu-
tor [8] by adding or modifying 10,418 LOC. In addition to
the design presented above, we added internal capabilities,
such as checkpointing function results over specific system
states, so that quantified properties can be instantiated over
the state they describe. There are two lessons that we expect
to be applicable to other solver-aided frameworks.

Solver portfolio and SMT bugs. To reduce the solver
query time, TPot uses a portfolio of solvers. Following prior
work [29, 45, 55], TPot races multiple solvers: it sends the
queries to multiple solvers that run in parallel, and uses the
earliest returned result.

When using a solver portofolio, one should expect to
encounter solver bugs more often. Solvers of course have
bugs [69], but what is not obvious is that buggy behavior is
often faster than correct behavior. In a portfolio, the solver
hitting a bug is likely to return its incorrect result faster than
the other solvers. In other words, a solver portfolio is likely
to exhibit a bug any time one of the individual solvers does
so. Therefore, a solver portfolio is more often wrong than
an individual solver. To overcome this issue, we recommend
that TPot users validate the results returned by the portfolio
a posteriori, by re-running each query in a separate CI job
that waits for multiple solvers in the portfolio to terminate
and checking that they agree.

Persistent query caching. During development, program-
mers often make commits with frequent small changes to the
code and/or specifications of various components, repeating
a large number of queries that have been solved before.
Inspired by prior work [65], TPot extends query caching
by making the results persistent on disk. In this way, the
query results can be reused from one run to the next. In a
CI setting, this helps ensure that the CPUs are used to verify
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the modified parts of the code rather than on re-solving
previously solved queries.

We found that building a persistent cache early in the
development of TPot was crucial to facilitating not only its
use but also TPot’s development: being able to reproduce
errors without having to wait for queries to be re-solved
made debugging TPot itself much faster.

5 Evaluation

Our evaluation answers the following questions:
e Can TPot verify a variety of systems code without
requiring code to be modified to suit the verifier? (§5.1)
e Does TPot reduce the manual effort required to verify
the components, and by how much? (§5.2)
o Is verification time with TPot compatible with a CI
pipeline? How does it break down among the different
types of work that TPot performs? (§5.3)

Evaluation Environment: TPot is meant to run as part of
a CI workflow, so we perform our evaluation on a powerful
CI-class machine: 2 x 12-core Intel Xeon Gold 6248R proces-
sors with 384GB RAM, hyperthreading enabled, with Ubuntu
20.04 and Linux kernel 5.4.0. We disable the persistent SMT
query cache (§4.4), to evaluate the worst case for TPot. The
solver portfolio (§4.4) includes 15 instances of Z3, involv-
ing 13 versions of Z3 between 4.4.1 and 4.12.5, some with
different configuration parameters (e.g., arithmetic solver,
branch/cut ratio, number of threads).

5.1 Verifying Diverse Systems-Code Components

We use TPot to verify 6 different code bases that have been
previously verified with 4 different verifiers, shown in Ta-
ble 3. These code bases cover a wide range of systems
code with low-level systems programming idioms, such as
pointer«<integer conversions, pointer arithmetic, dynamic
memory allocation/free, and more.

Previously LOC

Target name Category verified with
pKVM emem allocator Heap allocator CN [57] 96
Vigor allocator Resource manager VeriFast [34] 96
KVM page table Page table RefinedC [61] 135
USB driver Device driver VeriFast [34] 523
Komodo® Security monitor Serval [49] 1409
Komodo* Security monitor n/a 1431

Table 3. Evaluation targets. Some are system components, others
are full systems but nevertheless still component-sized.

Evaluation targets: Google pKVM [44] is a hypervisor used
on Android devices for isolation between the host Linux ker-
nel and guest virtual machines. The pPKVM emem allocator is
used by pKVM during boot-up. It tracks memory allocation
over a contiguous address range using long integers. It casts



the address of the next free page into a pointer, so that the
page can be zero-initialized at allocation time.

The Vigor allocator [71] is used in various network func-
tions to manage a variety of objects (e.g., IP addresses and
ports in a NAT). It maintains timestamps associated with
each object in an array, so that the object can be reclaimed
if the object lease is not renewed prior to expiration.

The KVM page table [62] is a case study used by Re-
finedC [72], in essence a simplified version of the Linux
KVM page table that can set a page table entry (PTE), mark
a PTE as invalid, set the protection bits of a PTE, and check
whether a page is in use or not. It relies on bitwise opera-
tions to operate over PTEs, which pack page-aligned physical
addresses and protection bits into 64-bit integers.

USB driver [35] is a Linux device driver for USB mice,
used as a case study by VeriFast [34]. It includes code to
handle interrupts, mouse probing, and disconnection, and
to open/close the mouse device file. It dynamically allocates
internal data structures during probing, and frees them dur-
ing disconnection. It makes calls to the Linux USB core, an
abstraction over USB hardware controllers, as well as the
Linux input subsystem. It type-casts buffer pointers returned
by various Linux APIs into driver-specific control structures.

Komodo [25] is the software-based security monitor for
enclaves mentioned in §1. Komodo® [50] is the Komodo ver-
sion ported by the Serval team, with pointers and virtual-
to-physical address translation removed, to be verifiable by
Serval. Komodo* is Komodo® with the VA-to-PA translation
and pointers and associated arithmetic added back in.

Properties verified with TPot: For the first 5 targets, we
ported the specifications written for the 4 baseline verifiers to
POTs written in TPot’s specification language. We then ran
these POTs, without modifying any of the targets’ existing
code. For Komodo®, the last target, we added back the pointer
support and address translation removed for Serval, and
re-verified the same specifications. This demonstrates that
TPot’s specification language is powerful enough to express
the specifications written for the baseline verifiers, including
functional correctness properties and the absence of low-
level bugs. Below, we detail properties verified with TPot.

For the pKVM emem allocator, we verify that allocation
APIs return pointers to zero-initialized memory chunks of
the expected size, and that they update global variables to
ensure the same memory will not be allocated again.

For the Vigor allocator, we verify that: object borrow-
ing (leasing) succeeds only for objects not previously in use;
refreshing and returning objects updates their timestamps
correctly; the timestamps of unrelated objects remain un-
changed after borrowing/refreshing/returning an object. The
original VeriFast specification also describes when borrow-
ing succeeds by relating the state of the allocator to an ab-
stract set of previously borrowed objects. Since this abstract
state is neither part of the implementation nor observable
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through the allocator’s API, our POTs do not capture it.

For the KVM page table, we verify that each function
modifies its PTE arguments as specified by the RefinedC
formalization (we reason directly on bitvectors, whereas
RefinedC abstracts them into field-based structures).

For the USB driver, we verify that: opening/closing a de-
vice respectively submits/cancels USB request blocks; prob-
ing initializes the device and allocates necessary data struc-
tures on success; and all such data structures are freed upon
disconnection. We also verify that the driver calls Linux func-
tions correctly (i.e., meets their pre-conditions). The VeriFast
specification does not consider the actual implementation of
these Linux functions but relies on trusted VeriFast contracts
instead. We take a similar approach: we model their behavior
using simple C functions. Both VeriFast’s and TPot’s proofs,
therefore, assume that the models/contracts for these exter-
nal functions are representative of their actual behavior.

For all evaluation targets, we also prove the absence of low-
level bugs, such as out-of-bounds array accesses and divide-
by-zero. We also verify that their initializers establish all
global invariants that the verification of API functions relies
on, and that each API function maintains these invariants.

TPot is designed to verify system components as a whole
and is not concerned with how different proofs compose.
As such, we leave out compositional aspects of the baseline
specifications: for the pKVM emem allocator, we do not spec-
ify the transfer or ownership over the allocated memory.
For Komodo, we omit the derived properties implied by the
composition of functional correctness specifications, such as
reference-count consistency. The baseline annotation over-
heads we report in Table 4 do not count lines of specification
related to these aspects.

TPot’s specification language does not include (and does
not require) the notion of ownership. We do, however, lever-
age TPot’s naming-based heap primitives to specify and ver-
ify memory safety (e.g., that only allocated memory is ac-
cessed) and the absence of memory leaks.

Summary: TPot can verify diverse systems components
without requiring their code to be modified to suit TPot. TPot
proves the absence of low-level bugs and achieves the same
functional correctness guarantees as the baselines, though
without the same level of abstraction or compositionality.

5.2 Annotation Overhead

It is hard to fully quantify the extent to which TPot reduces
the developer effort involved in proving code correct: there
are aspects that are inherently hard to quantify (e.g., intuitive-
ness of the specification language) and others that require
statistically sound human-subject experiments and usability
studies that are beyond the scope of our evaluation. There-
fore, we limit ourselves to measuring overhead in terms of
what a developer needs to write to verify their code. The
results are presented in Table 4. This underestimates TPot’s



benefits—for example, it is easier for a C programmer to
write annotations in TPot’s C-based language than in Coq
or VeriFast, but we cannot rigorously assess by how much.
We use cloc [1] to count the lines of implementation code,
and manually-written tags counted by scripts to determine
the annotation counts for each category.

Vi
pKVM emem igor KVM USB Komodo® Komodo™
allocator allocator page table  driver

@]

S % S o kg ~ S o X s

> ¥ O ¢ 9O < S|l & O £ ©
ogégégégé,yé“’“
Specifications 22 23 34 53 61 132 69| 164 63| 563 560 574
Internal 13 10 0 4 0 24 0| 409 0 0 (U 0
Predicates 7 5 0 27 0 0o 0 97 0 0 0 0
Proof 0 3 0 84 0 62 0 18 0 0 0 0
Loops 1 7 19 17 25 0 0 0 0 0 0 0
Globals 17 12 5 0 5 0 0 0 22| 266 158 178
Linux models 0 0 0 0 12 0o 0 0 185 0 0 0
Syntactic total 70 60 58 185 103 218 69| 688 270| 829 718 752
Semantic total 63 59 38| 166 79| 208 63| 581 209| 784 495 520
Syntactic overhead|73% 62% 60%|193% 107%| 161% 51%|132% 52%| 59% 51% 53%
Semantic overhead|66% 61% 40%| 173% 82%| 154% 47%| 111% 40%| 56% 35% 36%

Table 4. Annotation overhead (in lines). Specifications is for specify-
ing API functions and related definitions. Internal is for specifying
pre- and post-conditions of internal functions. Predicates are code
annotations for folding/unfolding predicates. Proofis for proof anno-
tations. Loops is for loop invariants. Globals is for global invariants
and global data structure predicates. Linux models is the C code
used by TPot to model Linux functions. Syntactic total is the total
annotation overhead counted syntactically, as is the standard in
prior literature. Semantic total is our count of semantically relevant
lines, excluding purely syntactic elements. Syntactic overhead re-
ports the syntactic proof-to-code ratio, while Semantic overhead is
the more meaningful ratio, based on Semantic total.

TPot specifications aim to remain true to standard C syn-
tax. As a result, they involve many lines that result from
syntactic and stylistic choices. We therefore list in Table 4,
under Semantic total, our count of lines that are semantically
relevant, for each verifier. We omit from this count lines
such as sole delimiters (e.g., ),:,},/*@, |3) and include/im-
port statements in all five languages, as well as empty return
statements and loop invariant signatures in our C specifica-
tions. The precise accounting for each line is accessible as
part of our artifact [10]. Our main overhead metric (Seman-
tic overhead) excludes such lines, because their associated
cognitive load for developers is essentially zero.

Compared to our baselines, TPot incurs 1.03-3.15X less
syntactic overhead and 1.53-3.28X less semantic overhead.
This reduction results primarily from two design choices:

First, TPot expresses constraints directly over C variables,
instead of abstract logic counterparts, so its specifications are
more succinct. As a simple example, the VeriFast specifica-
tion for the pKVM emem allocator includes a pre-condition
requiring that the address marking the end of the memory
range be < UINTPTR_MAX. The TPot specification does not
need to explicitly state this condition, because it is known
to hold for all long integers in C. The overhead of bridg-
ing the gap between implementation state and specification
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state is particularly aggravated in interactive frameworks:
for the KVM page table, 79% of the overhead in the RefinedC
specification comes from Coq definitions that abstract over
implementation state.

Second, TPot removes the need for internal function spec-
ifications, proof hints, or explicit folding/unfolding of predi-
cates, which further reduces the annotation overhead. This
is especially true of code involving custom data structures
with pointers, as in the Vigor allocator. For the USB driver, re-
placing VeriFast’s specifications of internal Linux functions
with TPot’s simplified C models reduces by 55% the lines of
code that need to be written for this aspect of the proof.

Summary: Compared to the baseline verifiers, the annota-
tion overhead TPot incurs is consistently less, with reduc-
tions ranging up to more than 3x. This is an underestimate
of the true benefit that TPot offers practitioners in terms of
reduction in effort, and thus increase in productivity.

5.3 Verification Time

TPot verifies a component by running all POTs in parallel,
as POTs are independent of each other (§3). Table 5 shows
the verification time for our 6 targets, as well as the number
of POTs for each one.

pKVM emem  Vigor KVM USB

S "
allocator |allocator|page table| driver Komodo®, Komodo

# of POTs 4 5 3 5 16 16
Avg 21s| 1m36s 6s| 4mé6s| 11m36s| 25mb4s
Min 1s 21s 3s| 1mb4s 7m48s 7mb54s
Max 49s| 5ml8s 9s| 7m36s| 18ml8s| 59m36s
CI time 2m18s| 7m18s 2m18s| 10mé6s| 20m24s 1h4m
CPU time 1m24s| 8m24s 18s|20m24s 3h5m| 6h54m

Table 5. Number of POTs and verification time. Min/Max show
the time it takes to run the fastest/slowest POT, and Avg shows
the average. CI time shows how long it takes end-to-end to run all
POTs for a given target. CPU time shows total CPU time used.

The most important results are shown in the CI time row:
this comprises the time to set up all the POTs, execute them in
parallel, and tear them down. This is the amount of time that
a CI pipeline must wait for the verification to complete and
includes all the waits, including I/O. The CPU time column
shows total CPU time consumed for the verification, and is
a good proxy for the monetary cost of the verification in a
CI cloud that charges per CPU-hour.

The contrast in trade-offs between TPot and the baseline
verifiers is significant: their verification times can be sub-
stantially lower than TPot’s (numbers not shown: tens of
minutes for Komodo®, verified with a push-button verifier,
to as low as seconds for the other targets, verified with semi-
automated verifiers), but they require more effort to use.
TPot shifts most of the effort to the verifier by targeting ver-
ification times compatible with a CI workflow as opposed to
pseudo-interactive use.

Fig. 7 shows where TPot spends its time: Most of it (53—
80%) is in the solver, which is not surprising, given how much



TPot relies on the solver for automation. Depending on the
characteristics of the code, a larger fraction may go toward
resolving pointers to memory objects or toward determining
branch feasibility. A non-negligible amount of time (8-28%)
is spent on serializing the queries into a format compatible
with the solver portfolio. This overhead can potentially be
eliminated by re-designing the interface to the solver portfo-
lio, or using memory shared between TPot and the solver to
pass the queries (though this may be less compatible with a
cloud-based solver portfolio service).

f § ,,

Vigor KVM  USB  Komodo®Komodo®
alloc pgtbl  driver

Other  m—
Serialization

SMT:branches

SMT:pointers =<3
Query simplif.

< e
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Normalized fraction
of total time

=3

PKVM
alloc

Figure 7. Breakdown of verification time. Query simplif is time
spent simplifying queries (§4.3), potentially using the solver.
SMT:pointers is time spent on queries made to resolve pointers
to memory objects. SMT:branches is time spent on queries made to
determine branch feasibility. Serialization is time spent on serializ-
ing queries before sending to the solver.

Summary: The amount of time it takes to verify system com-
ponents using TPot is compatible with modern CI pipelines.
The practitioner therefore gets to trade verification time for
a reduction in annotation overhead.

6 Limitations, Future Work, Discussion

There are four main limitations to the current implemen-
tation of TPot. First, it makes simplifications that rule out
quantification over stack depth, and hence unbounded re-
cursion (§4.1) and certain recursive data structures. This is
a pragmatic choice: as shown in §5, TPot can still handle
many interesting code and data structure patterns. Second, it
still requires user effort to specify invariants for unbounded
loops. We posit that many such invariants could be inferred,
using e.g. loop templates [68]. Third, it has no support for
concurrency. This could be fixed by extending KLEE and
updating our memory model accordingly [14, 31, 53, 66, 67].
Fourth, it is restricted to verifying individual systems compo-
nents. This is by design: we aim to reduce the effort required
for component-level verification before attempting system-
level verification. We do not tackle the problem of composing
component-level proofs into end-to-end verified systems.

We only tested TPot on relatively small components, up to
1500 lines. The path explosion problem, which TPot inherits
from traditional symbolic execution, presents a challenge in
scaling to larger components or full systems. Though sup-
porting loop invariants partially addresses path explosion,
verifying large systems is still out of scope for TPot.

While the limited quantification offered by TPot’s primi-
tives proved expressive enough for our case studies, in gen-
eral there are many properties it cannot express. For instance,
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properties involving aggregation (e.g., the sum of elements in
an array) cannot be expressed in a per-element fashion. We
posit that TPot could be extended to handle such properties
while keeping automated verification tractable. This could be
achieved either by using more powerful array theories [58] in
the solver backend, or by providing specification primitives
that offer scalable encodings for common idioms in systems
code, akin to Serval’s treatment of reference counting.

We chose C as the language for both implementations and
specifications. For the most complex verification problems,
a clean and pure functional specification language with a
powerful logic would be a better fit: imperative C is not
a good language to write high-level functional models in.
However, one surprising result of our experiments is that C
expressions are sufficient for our purposes, once we augment
them with limited quantification. Even better, this means
that we can reuse existing unit tests, already written in C, as
the basis for our specifications.

Rust is another promising implementation language for
verified systems code, as demonstrated by Verus [37]. We tar-
get C as it is still the de-facto language for systems software,
but we believe that most of the techniques in TPot would
be applicable to the verification of Rust code, particularly
around unsafe sections. Unsafe code is typically short and
hidden behind well-isolated components, aligning with the
component-level verification approach. Moreover, similar to
C, unsafe Rust includes verification-hostile features such as
raw pointers, which TPot is specifically designed to handle.

7 Conclusion

This paper presents TPot, a novel verifier that occupies a
new design point for system component verification. TPot
1) incurs less manual effort than existing semi-automated
verifiers; 2) is friendly for ordinary programmers; 3) is not
limited to specific types of applications; and 4) does not re-
quire adapting systems code for verification. TPot employs
custom SMT encoding for systems code to automate pointer
operation reasoning, aggressively inlines internal functions,
and includes a C-based specification language that is expres-
sive enough for most properties in systems software while
ensuring automated verification. Our evaluation shows that
TPot can verify various systems components with the same
guarantees as state-of-the-art verifiers, without requiring
code changes. TPot consistently reduces manual effort, with
reductions ranging up to more than 3%, compared to the
state of the art. It takes at most around an hour to complete
verification, making it suitable for CI deployment.
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A Example Specification and Verification

In this appendix, we present the TPot specification for the pKVM emem
allocator case study. Then, we explain in detail how TPot verifies a part of
the specification. The appendix has not been peer-reviewed.

A.1 TPot Specification for pPKVM emem allocator

Below is the specification we use in our pKVM emem allocator case study.
The specification consists of a global invariant, four POTs specifying API
functions, and a helper function passed to forall_elem in two of the POTs.
1 // Global invariant

2 bool inv__early_alloc() {
3 return names_obj((char *)base, char[NUM_PAGES*PAGE_SIZE])

4 && end == base + NUM_PAGES * PAGE_SIZE
5 && cur >= base & cur <= end;

6}

7

8 // Helper function

9 bool alloc_range_zero(int64_t i, int64_t start, int64_t end) {
10 if (i < start || i >= end) return true;
11 return ((char *)base)[i] == 0;

12 }

13

14 // POTs

15 void spec__alloc_page() {

16 assume(cur + PAGE_SIZE < end);

18 unsigned long prev_end = end, prev_cur = cur;

20 char *result = hyp_early_alloc_pageQ);

22 assert(result != NULL);
23 assert(forall_elem((char *)base, &alloc_range_zero,
24 result - base, result - base + PAGE_SIZE));

26 assert(cur
27 assert(end
28 }

== prev_cur + PAGE_SIZE);
== prev_end);

30 void spec__alloc_contig() {

31 any(unsigned int, nr_pages);
32 assume (nr_pages > 0);
33 assume(cur + PAGE_SIZE * nr_pages < end);

35 unsigned long prev_end = end, prev_cur = cur;

37 char *result = hyp_early_alloc_contig(nr_pages);

39 assert(result != NULL);
40 assert(forall_elem((char *)base, &alloc_range_zero,
41 result - base, result - base + PAGE_SIZE * nr_pages));

43 assert(cur
44 assert(end
45 }

== prev_cur + PAGE_SIZE * nr_pages);
== prev_end);

47 void spec__nr_pages() {

48 unsigned long result = hyp_early_alloc_nr_pagesQ);
49 assert(result == (cur - base) / PAGE_SIZE);

50 }

52 void spec__init() {
53 any(unsigned long, virt);
54 assume (names_obj ((char *)virt, char[NUM_PAGES * PAGE_SIZE]));

56 hyp_early_alloc_init(virt, NUM_PAGES
57 }

* PAGE_SIZE);

pKVM uses the early allocator during initialization, to manage memory
allocation over a flat region. The allocator does not support memory recla-
mation, so it only tracks how much of the region has been allocated. Its
state consists of three global long integers: base and end store the addresses
that mark the beginning and end of the allocatable region, and cur stores
the base address of the next block to be allocated.

inv__early_alloc is the global invariant. It states that base names the
allocatable region, that end is equal to base plus the size of the buffer, and
that cur is between base and end.
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spec__alloc_page is a POT specifying the functional correctness of the
API function hyp_early_alloc_page: assuming there is at least one page
left to allocate, hyp_early_alloc_page will run and terminate without low-
level errors and return a non-null pointer. All allocated bytes, which are at
offsets between result-base and result-base+PAGE_SIZE from base, will be
zero initialized. cur will be incremented by PAGE_SIZE and end will remain
unchanged. Stated precisely, line 23 asserts the following: for all elements of
the array of characters located at base, alloc_range_zero(i, result-base,
result-base+PAGE_SIZE) returns true, where i is the element’s index.

spec__alloc_contig specifies hyp_early_alloc_page, which allocates
a number of contiguous pages. The specification closely mimics
spec__alloc_page.

spec__nr_pages specifies the value hyp_early_alloc_nr_pages is ex-
pected to return, and spec__init says that the region used to initialize
the allocator must be named by the virt pointer argument. Implicitly,
inv__early_alloc must be established after hyp_early_alloc_init, and
maintained after the other API functions.

A.2 Verifying spec__alloc_page

This section provides a walkthrough of how TPot verifies spec__alloc_page.
To this end, we present below the body of the API function
hyp_early_alloc_page, along with the internal function clear_page. The
former is annotated with a loop invariant (loopinv_clear_page), whose
body is omitted for brevity.

1 void clear_page(void *to) {

2 int i = 0;

3 while(i < 4096) {

4 _tpot_inv(&loopinv_clear_page, &i, &to,

5 // modified memory

6 &i, sizeof(i), to, PAGE_SIZE);

7 *((char *) to+i) = 0;

8 it++;

9}

10 }

12 void * hyp_early_alloc_page() {
13 unsigned long ret = cur;

15 cur += PAGE_SIZE;
16 if (cur > end) {
17 cur = ret;

18 return NULL;

20 clear_page((void*)ret);

22 return (void *)ret;
23 }

TPot’s symbolic state representation includes a heap, a set of stack vari-
ables and globals, a program counter, and a path condition (denoted C).
The latter is the set of constraints over initial state required for a concrete
execution to follow a particular code path. To verify the POT, TPot (1) adds
the constraint the global invariant must hold to C, (2) symbolically executes
the POT, forking the state when execution branches, (3) proves that the
respective path condition implies each assertion for all resulting states, and
(4) proves the global invariant holds over all resulting states.

To achieve (1), TPot computes inv__early_alloc into a formula by sym-
bolically executing it and merging the return values of all paths. Concretely,
symbolic execution produces five paths (due to the short-circuiting seman-
tics of &&), four returning false and one returning true. TPot then computes
a disjunction over all paths ((C; A retvaly) V (Cz A retvaly) V ...), which
in this case simplifies to names_obj(...) A end = base + NUM_PAGES x
PAGE_SIZE A cur > base A cur < end.

We wuse names_obj(...) as a shortcut here. In reality, TPot
creates a heap object at a fresh address objaddr_base, adding
heap_safe(tpot_bv2int(objaddr_base)) = NUM_PAGES x PAGE_SIZE
to C, and replaces names_obj(...) with tpot_bv2int(base) =
tpot_bv2int(objaddr_base). TPot completes (1) by adding the dis-
junction to the C, then starts symbolically executing spec__alloc_page.



At line 16, TPot makes an SMT query (C A cur + PAGE_SIZE < end) to
check that the assumption is feasible, and then adds cur+PAGE_SIZE < end
to C. After reaching line 20, symbolic execution follows the control flow
into the body of hyp_early_alloc_page.

Line 16 in hyp_early_alloc_page is a potential branch. TPot determines
the feasibility of each side of the branch by making two SMT queries (C A
cur + PAGE_SIZE > end and C A cur + PAGE_SIZE < end), where cur
denotes the initial value of the global variable. The first SMT query returns
UNSAT, indicating that the true branch is infeasible, and so TPot does not
fork.

At line 4 in clear_page, TPot handles the loop invariant. The body of the
loop invariant (loopinv_clear_page, omitted) says that the byte at to + j
is equal to zero for all j between zero and i. TPot (a) symbolically executes
loopinv_clear_page and checks that it must return true, (b) havocs all state
modified by the loop (sizeof(i) bytes at & and PAGE_SIZE bytes at to), (c)
assumes the loop invariant over the havoced state. Furthermore, for each
state that and reaches the invariant again, TPot checks that the invariant
is maintained, and that no other state modified than the bytes that were
havoced.

Atline 7, TPot performs pointer resolution to determine whether writing
through ((char *)to+i) is memory safe, and if so, to enumerate the objects
it might point to. The memory safety check takes the form of an SMT
query (C A (3b.tpot_bv2int(to) + tpot_bv2int(i) > b A tpot_bv2int(to) +
tpot_bv2int(i) < b + heap_safe(b))), which succeeds due to the naming-
related constraints added earlier to C. Enumerating target objects generally
entails making one SMT query per heap object to determine whether it is
feasible for the pointer to fall in bounds of the object, and forking a state
for each such object. In this example, the heap contains a single object and
so TPot does not need to fork.

When symbolic execution loops back to line 3, TPot forks the state, since
the value of i is havoced, making both sides of the branch (i + 1 < 4096
and i +1 > 4096) feasible. The < branch reaches the invariant again, and is
terminated after the checks described above.

The > branch exits the loop, returns from clear_page and
hyp_early_alloc_page, and reaches line 23 in spec__alloc_page. Impor-
tantly, the path condition for this state includes the loop invariant, and
i+ 1 > 4096, implying that the byte at to + j is equal to zero for all j
between zero and 4096. TPot maintains this fact as a forall_elem property,
explicitly instantiated when the heap object named by base is read.

To handle the forall_elem on line 40, TPot checks whether alloc_-
range_zero(k, result-base, result-base+PAGE_SIZE) is provable for any
k. To this end, TPot symbolically executes the body of alloc_range_zero in
the current state with a fresh k. During this process, at line 11, the read on
base triggers an instantiation of the forall_elem property resulting from
the earlier loop invariant. This lets TPot prove that alloc_range_zero must
return true.

TPot proves the rest of the assertions in spec__alloc_page with an SMT
query each. For each assert(cond), TPot expects an UNSAT result for the
query (C A —cond).

Lastly, TPot achieves (4) by symbolically executing inv__early_alloc
over the final state and checking that all feasible paths must return true.
In this case, the path condition makes all short-circuiting paths infeasible,
and the only feasible path returns cur + PAGESIZE < end. TPot determines
through an SMT query that this must be true, due to the earlier assumption
(on line 16) that added cur + PAGE_SIZE < end to C.
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