
RRC: Responsive Replicated Containers

Diyu Zhou
UCLA and EPFL

Yuval Tamir
UCLA

Abstract
Replication is the basic mechanism for providing application-
transparent reliability through fault tolerance. The design and
implementation of replication mechanisms is particularly chal-
lenging for general multithreaded services, where high latency
overhead is not acceptable. Most of the existing replication
mechanisms fail to meet this challenge.

RRC is a fully-operational fault tolerance mechanism for
multiprocessor workloads, based on container replication. It
minimizes the latency overhead during normal operation by
addressing two key sources of this overhead: (1) it decouples
the latency overhead from checkpointing frequency using a
hybrid of checkpointing and replay, and (2) it minimizes the
pause time for checkpointing by forking a clone of the con-
tainer to be checkpointed, thus allowing execution to proceed
in parallel with checkpointing. The fact that RRC is based on
checkpointing makes it inherently less vulnerable to data races
than active replication. In addition, RRC includes mechanisms
that further reduce the vulnerability to data races, resulting
in high recovery rates, as long as the rate of manifested data
races is low. The evaluation includes measurement of the re-
covery rate and recovery latency based on thousands of fault
injections. On average, RRC delays responses to clients by
less than 400µs and recovers in less than 1s. The average
pause latency is less than 3.3ms. For a set of eight real-world
benchmarks, if data races are eliminated, the performance
overhead of RRC is under 48%.

1 Introduction
For many applications hosted in data centers, high reliability
is a key requirement, demanding fault tolerance. The key de-
sirable properties of a fault tolerance mechanism, especially
for server applications, are: A) Low throughput and latency
overheads; B) Support for multithreaded applications; and
C) Application transparency. Replication, has long been used
to implement application-transparent fault tolerance, espe-
cially for server applications.

The two main approaches to replication, specifically, du-
plication, are: (1) high-frequency checkpointing of the pri-
mary replica state to a passive backup [33], and (2) active
replication, where the primary and backup both execute the
application [38, 47]. A key disadvantage of the first approach
is that, for consistency between server applications and their
clients after failover, outputs must be delayed before being
released to the client, typically for tens of milliseconds. Such
delays are unacceptable for many server applications.

To support active replication of multiprocessor workloads,

where there are many sources of nondeterminism, active repli-
cation is implemented using a leader-follower algorithm. With
this algorithm, the outcomes of identified nondeterministic
events on the primary, namely synchronization operations
and certain system calls, are recorded and sent to the backup.
This allows the backup to deterministically replay their out-
comes [38, 47]. A disadvantage of this approach is that it
is vulnerable to even rare replay failures due to untracked
nondeterministic events, such as those caused by data races.
Another disadvantage is that, for application with a high rate
of synchronization operations, the replay on the backup may
be significantly slower than the execution on the primary, re-
sulting in high throughput overhead [38]. This is due to the
interaction between thread scheduling by the OS and the need
to mirror on the backup the execution on the primary.

This paper presents a fault tolerance scheme, based on con-
tainer replication, called RRC (Responsive Replicated Con-
tainers). RRC targets server applications and is thus optimized
to minimize response latency overhead. RRC overcomes the
disadvantages of existing approaches using a combination of
periodic checkpointing [33, 62] and externally-deterministic
replay [29]. The primary sends periodic checkpoints to the
passive backup. While executing, the primary logs to the
backup the outcomes of nondeterministic events. Upon failure,
the backup restores the latest checkpoint and deterministically
replays the execution up to the last external output. Hence,
external outputs only need to be delayed by the short amount
of time it takes to send and commit the relevant portion of the
nondeterministic event log to the backup.

RRC minimizes request-reply latency overhead, not only
for the average case, but also the tail latency overhead. To
that end, RRC had to overcome a key challenge, namely, that
while the state of the primary is collected for transmission to
the backup, execution has to be paused. Even with various op-
timizations, this latency is often tens of milliseconds, largely
due to the cost of retrieving in-kernel state associated with the
container, such as the state of open file descriptors [62]. To
meet this challenge, RRC introduces a new kernel primitive:
container fork. For checkpointing, RRC pauses the primary
container, forks a shadow container, and resumes execution.
This results in pause times of less than 3.5ms. The checkpoint
is obtained from the shadow container.

RRC decouples the response latency from the checkpoint-
ing duration. This enables high performance by allowing the
tuning of epoch duration to trade off performance and re-
source overheads with recovery latency and vulnerability to
untracked nondeterministic events. The latter is important

since applications may contain data races (§3, §6.3). RRC is
focused on dealing with data races that rarely manifest and
are thus more likely to remain undetected (§3). Since RRC
only requires replay during recovery and for the short interval
since the last checkpoint, it is inherently more resilient to data
races than active replication schemes that rely on replay of
the entire execution [38]. Furthermore, RRC includes timing
adjustment mechanisms that result in a high recovery rate
even for applications that include data races, as long as their
rate of unsynchronized writes is low (§4.7).

RRC also decouples the performance on the primary from
the backup. Thus, unlike active replication schemes [38], the
backup is not a performance bottleneck (§6.1).

Replication can be at the level of VMs [27, 33, 35, 53, 58],
processes [32, 38, 47], or containers [62]. Containers have
advantages over VMs due to smaller memory and storage
footprints, faster startup, and avoiding the need to manage
updates of multiple VMs [25,45]. Furthermore, containers are
the best fit for mechanisms such as RRC. Applying RRC’s ap-
proach to VMs would be complicated since there would be a
need to track and replay nondeterministic events in the kernel.
On the other hand, with processes, it is difficult to avoid po-
tential name conflicts (e.g., process IDs) upon failover. While
such name conflicts can be solved, the existing container
mechanism already solves them efficiently.

The implementation of RRC involved developing solutions
to implementation challenges that have not been addressed
by prior works. The most important of these is dealing with
the integration of timer-triggered checkpointing, that is not
synchronized with the application, and user-level recording of
nondeterministic events (§4.2). RRC also efficiently handles
the failover of TCP connections through checkpoint restora-
tion, a replay phase, and finally resumption of live execution
(§4.3, §4.4). RRC is application-transparent and does not re-
quire any changes to the application code.

We have implemented a prototype of RRC and evaluated its
performance and reliability. With 1s epochs, RRC’s through-
put and average latency overheads were less than 49% and
230µs, respectively, for all eight benchmarks. With 100ms
epochs, the corresponding overheads were less than 53% and
291µs for seven benchmarks, 86% and 264µs for the eighth.
RRC is designed to recover from fail-stop faults. We used
thousands of fault injections to validate and evaluate RRC’s
recovery mechanism. For all eight benchmarks, after data
races identified by ThreadSanitizer [6] were resolved, RRC’s
recovery rate was 100% for 100ms and 1s epochs. Three
of the benchmarks originally included data races. For two
of these, without any modifications, with 100ms epochs and
RRC’s timing adjustments, the recovery rate was over 99.1%.

RRC achieves both low response latency overhead and
resilience to infrequently-manifested data races. This com-
bination provides a fundamental advance over both Remus-
based techniques [33] and active replication [38, 47], respec-
tively. Specifically, we make the following contributions: 1) a

fault tolerance scheme based on container replication, using
a unique combination of periodic checkpointing, determinis-
tic replay, and an optimized scheme for failover of network
connections; 2) a new system call, container fork, used to min-
imize tail latency overhead; 3) a replication mechanism with
inherent resilience to untracked nondeterministic events, fur-
ther enhanced by mechanisms that increase recovery success
rate in the presence of data races; 4) a thorough evaluation
of RRC with respect to performance overhead, resource over-
head, and recovery rate, demonstrating the lowest reported
external output delay compared to competitive mechanisms.

Section 2 presents two key building blocks for RRC: NiL-
iCon [62] and deterministic replay [21, 29, 44, 50, 57]. An
overview of RRC is presented in §3. RRC’s implementation
is described in §4, with a focus on key challenges. The ex-
perimental setup and evaluation are presented in §5, and §6,
respectively. Limitation of RRC and of our prototype imple-
mentation are described in §7. §8 provides a brief overview
of related work.

2 Background
RRC integrates container replication based on periodic check-
pointing [33, 62], described in §2.1, and deterministic replay
of multithreaded applications, described in §2.2.

2.1 NiLiCon
Remus [33] introduced a practical application-transparent
fault tolerance scheme based on VM replication using high-
frequency checkpointing. NiLiCon [62] is an implementation
of the Remus mechanism for containers. A key challenge
faced by NiLiCon is that, compared to VMs, there is much
tighter coupling between the container state and the state
of the underlying platform. NiLiCon meets this challenge,
based on a tool called CRIU (Checkpoint/Restore in User
Space) [4], with novel optimizations that significantly reduce
overhead. CRIU checkpoints and restores the user-level and
kernel-level state of a container, except for disk state. NiLiCon
handles disk state by adding system calls to checkpoint and
restore the page cache and a modified version of the DRBD
module [8]. NiLiCon relies on CRIU to preserve established
TCP connections across failover, using a special repair mode
of the socket provided by the Linux kernel [18].

2.2 Deterministic Replay on Multiprocessors
Deterministic replay is the reproduction of some original
execution in a subsequent execution. During the original ex-
ecution, the results of nondeterministic events/actions are
recorded in a log. This log is used in the subsequent exe-
cution [29]. With a uniprocessor, nondeterministic events
include: asynchronous events, such as interrupts; system calls,
such as gettimeofday(); and inputs from the external world.

With shared-memory multiprocessors, there is a higher
frequency of nondeterministic events related to the order of

Request

PackGate

Backup
Agent

Re
le

as
e

Heart
Beats

Container
Checkpoint

Primary
Agent

Application

RR Lib

Container

Heart
Beats Checkpoint ND

Log

Reply

Primary Backup

PackRec

Request1

4

2

3

5

Reply 6

Figure 1: Architecture and workflow of RRC.

accesses to the same memory location by different processors.
For such systems, a common approach is to support determin-
istic replay only for programs that are data-race-free [49]. For
such programs, as long as the results of synchronization oper-
ations are deterministically replayed, the ordering of shared
memory accesses are preserved. The recording of nondeter-
ministic events can occur at different levels: hardware [40,59],
hypervisor [36, 37, 41], OS [39, 43], or library [49, 54]. With-
out dedicated hardware support, it is advantageous to record
the events at the user level, thus avoiding the overhead for
entering the kernel or hypervisor [44].

To support seamless failover with replication, it is suffi-
cient to provide externally deterministic replay [44]. This
means that, with respect to what is visible to external clients,
the replayed execution is identical to the original execution.
Furthermore, the internal state at the end of replay must be
a state that corresponds to a possible original execution that
could result in the same external behavior. This latter require-
ment is needed so that the replayed execution can transition
to consistent live execution at the end of the replay phase.

3 Overview of RRC
RRC provides fault tolerance by maintaining a primary-
backup pair with an inactive backup that takes over when
the primary fails. Execution on the primary is divided into
epochs and the primary state is checkpointed to an inactive
backup at the end of each epoch [33, 62]. Upon failure of the
primary, the backup begins execution from the last primary
checkpoint and then deterministically replays the primary’s
execution of its last partial epoch, up to the last external out-
put. The backup then proceeds with live execution. To support
the backup’s deterministic replay, RRC ensures that, before
an external output is released, the backup has the log of non-
deterministic events on the primary since the last checkpoint.
Thus, external outputs are delayed only by the time it takes to
commit the relevant last portion of the log to the backup.

Figure 1 shows the overall architecture of RRC. The pri-
mary records nondeterministic events: operations on locks
and nondeterministic system calls. The record and replay are
done at the user level, by instrumentation of glibc source code.
When the primary executes, the instrumented code invokes
functions in a dedicated RR (Record and Replay) library that
create logs used for replay. There is a separate log for each

Execute
Epoch N+1 Epoch N+2

MEM
COPY

Other
COPY

Send
CKPTRRC

CFORKContainer

Epoch N

…
…

Execute COW

pause pause

CFORK

Figure 2: Timeline of an epoch on the primary replica.

lock. For each thread, there is a log of the nondeterministic
system calls it invoked, with their arguments and return values.
Details are presented in §4.1.

Figure 1 shows the processing of requests and replies for
server applications. (1) Client requests are sent to the backup.
(2) To support TCP failover, the backup records incoming
packets and forwards them to the primary. (3) Replies from
the primary are forwarded to the backup and blocked by the
PackGate queueing discipline kernel module. (4) The pri-
mary sends the nondeterministic event log to the backup.
(5) Upon receiving the log, PackGate releases the correspond-
ing replies.

Figure 2 shows a timeline of each epoch on the primary
replica. First, the container is paused and a container fork is
performed. Execution is then resumed. The first write to a
page results in a Copy On Write (COW) so that the state of
the forked shadow container is maintained. Concurrently, the
pages modified since the last checkpoint are copied to a stag-
ing buffer (MEM COPY). Once this copy is completed, the
original container ceases to perform the COW operations. A
container checkpoint includes in-kernel state associated with
the container, such as the state of open file descriptors [62].
This state is obtained from the shadow container and written
to the staging buffer (Other COPY). The entire checkpoint is
then sent from the primary to the backup.

RRC is based on having the ability to identify all sources of
nondeterminism that are potentially externally visible, record
their outcomes, and replay them when needed. Thus, unsyn-
chronized accesses to shared memory during the epoch in
which the primary fails may cause replay on the backup to
fail to correctly reproduce the primary’s execution, leading
the backup to proactively terminate. This implies that appli-
cations are expected to be free of data races. However, not all
multithreaded programs meet this expectation. Furthermore,
precise race detection is NP-hard [48]. Hence, it is not possi-
ble to ensure that all data races are detected and eliminated.
Fortunately, frequently-manifested data races are detectable
using tools such as ThreadSanitizer [6]. Hence, only rarely-
manifested data races are likely to remain in applications.

Since RRC only requires replay of short intervals (up to one
epoch), it is inherently more tolerant to rarely-manifested data
races than schemes that rely on accurate replay of the entire
execution [38]. As an addition to this inherent advantage of
RRC, RRC includes optional mechanisms that significantly
increase the probability of correct recovery despite data races,
as long as the manifestation rate is low (§4.7). During execu-
tion on the primary, these mechanisms record the order and
timing of returns from nondeterministic system calls by all
the threads. During replay, the recorded order and relative

timing are enforced.
If the primary fails, network connections must be main-

tained and migrated to the backup [19, 20, 22, 60]. Like
CoRAL [19, 20], requests are routed through backup by ad-
vertising the service IP address in the backup. Unlike FT-
TCP [22, 60] or CoRAL, replies are also routed through the
backup, resulting in lower latency (§4.3).

As with most other state replication work [33, 53, 58, 62],
RRC assumes fail-stop faults. Either the primary or the backup
may fail. Heartbeats are exchanged between the primary and
backup so failures are detected as missing heartbeats. Thus,
RRC relies in the synchrony assumption [34] with respect to
both the hosts and the network. If the backup fails, the primary
configures its network, advertises the service IP address, and
communicates with the clients directly. To maintain redun-
dancy, a new backup needs to be instantiated and take over
the service IP address.

4 Implementation
This section presents the implementation of RRC, focusing
on the mechanisms used to overcome key challenges. RRC is
implemented mostly at the user level but also includes small
modifications to the kernel. At the user level, the implemen-
tation includes: agent processes on the primary and backup
hosts that run outside the replicated container; a special ver-
sion of the glibc library (that includes Pthreads), where some
of the functions are instrumented (wrapped), used by the ap-
plication in the container; and a dedicated RR (record and
replay) library, that provides functions that actually perform
the record and replay of nondeterministic events, used by the
application in the container.

The kernel modifications include: an ability to record and
enforce the order of access to key data structures (§4.1); sup-
port for a few variables shared between the kernel and RR li-
brary, used to coordinate checkpointing with record and replay
(§4.2); a new queueing discipline kernel module used to pause
and release network traffic (§4.3); and container fork (§4.6).

In the rest of this section, §4.1 presents the basic record
and replay scheme. §4.2 deals with the challenge of inte-
grating checkpointing with record and replay. §4.3 presents
the handling of network traffic. The transition from replay
to live execution is discussed in §4.4. The performance-
critical operation of transmitting the nondeterministic event
log to the backup is explained in §4.5. Container fork is pre-
sented in §4.6. §4.7 presents our best-effort mechanism for
increasing the probability of correct replay in the presence of
infrequently-manifested data races.

4.1 Nondeterministic Events Record/Replay

To minimize overhead and implementation complexity, RRC
records synchronization operations and system calls at the
user level. This is done by code added in glibc before (before

hook) and after (after hook) the original code. Recording is
done in the after hook, replay is in the before hook.

For each lock, there is a log of lock operations in the order
of returns from those operations. The log entry includes the ID
of the invoking thread and the return value. The return values
are recorded to handle the trylock variants as well as errors.
During replay, synchronization operations must actually be
performed in order to properly enforce the correct semantics.
For each lock, the ordering of successful lock acquires is
enforced. Since there is no need to enforce ordering among
different locks, it is sufficient to maintain a separate log for
each lock.

For each thread, there is a log of invoked system calls. The
log entry includes the parameters and return values. During
replay, the recorded parameters are used to detect divergence
(replay failure). For some functions, such as gettimeofday(),
replay does not involve the execution of the function and the
recorded return values are returned. However, as discussed in
§4.4, functions, such as open(), that involve the manipulation
of kernel state, are actually executed during replay.

There can be dependencies among system calls, even if they
are invoked by different threads. For example, this is the case
for system calls whose execution involve writes and reads
from kernel data structures, such as the file descriptor table.
Hence, simply maintaining a separate log for each thread is
not sufficient. To handle such cases, the kernel was modified
to maintain an access sequence number for each such shared
kernel resource. Each thread registers the address of a per-
thread variable with the kernel. When the thread executes a
system call accessing a shared resource, the kernel increments
the sequence number and copies its value to the registered
address. At the user level, this sequence number is attached
to the corresponding system call log entry. During replay, the
before and after hooks enforces the recorded execution order.

4.2 Integrating Checkpointing with
Record/Replay

Checkpointing is triggered by a timer external to the con-
tainer [62], and is thus not synchronized with the recording of
nondeterministic events on the primary. This has the potential
of resulting in a checkpoint and log contents on the backup
from which correct replay cannot proceed. One example is
that the checkpoint may include a thread in the middle of exe-
cuting code in the RR library, resulting in the backup, during
replay, attempting to send the nondeterministic event log to
the backup. A second example is that there may be ambiguity
at the backup as to whether a particular system call, such as
open(), was executed after the checkpoint and thus needs to be
reexecuted during replay, or executed before the checkpoint
and thus should not be reexecuted during replay.

A naive solution to the above problem would be to delay
the checkpointing of a thread if it is in execution anywhere
between the beginning of the before hook and the end of

the after hook. However, this could delay checkpointing for
arbitrarily long time if a thread is blocked on a system call,
such as read().

The actual solution in RRC has two properties: (I) check-
pointing of a thread is delayed if the thread is within the
before hook or within the after hook, and (II) checkpointing
of a thread can occur even if the thread is between the end of
the before hook and the beginning of the after hook.

To enforce property (I), each thread registers with the ker-
nel the address of a per-thread in_rr variable. In user mode,
the RR library sets/clears the in_rr when it respectively en-
ters/leaves the hook function. An addition to the kernel code
prevents the thread from being paused if the thread’s in_rr
flag is set.

To deal with property (II), RRC includes mechanisms to:
(A) detect that this scenario has occurred, and (B) elimi-
nate the potential ambiguities, such as the one mentioned
above and take appropriate actions during replay. To imple-
ment the required mechanisms, RRC uses three variables: two
per-thread flags – in_hook and syscall_skipped, as well as a
global current_phase variable [63]. These variables are shared
between the user level and the kernel. In the record phase,
in_hook is set in the before hook and cleared in the after hook
– this is mechanism (A) above.

For mechanism (B), syscall_skipped is used, during the
replay phase, to determine whether, during the record phase,
the checkpoint was taken before or after executing the system
call. During the record phase, this flag is cleared during ini-
tialization and is not otherwise read or written. With CRIU
(§2.1), if a checkpoint is triggered while a thread is executing
a system call, before that call performs any state changes, the
system call is retried after the checkpoint is restored. In the
replay phase, at an early point in the kernel code executing a
system call, if in_hook is set, the system call is skipped and
syscall_skipped is set. Thus, if the system call was not exe-
cuted before the checkpoint, it will be initially skipped during
replay. During replay, if the after hook finds that in_hook and
syscall_skipped are set, it passes control back to the before
hook and the system call is then replayed or re-executed.

The handling of lock operations is similar to the handling
of system calls. In the after hook, if in_hook is set, the lock
is released and control is passed to the before hook, thus
allowing enforcement of the order of lock acquires.

4.3 Handling Network Traffic

The current RRC implementation assumes that all network
traffic is via TCP. To ensure failure transparency with re-
spect to clients, there are three requirements that must be met:
(1) client packets that have been acknowledged must not be
lost; (2) packets to the clients that have not been acknowl-
edged may need to be resent; (3) packets to the clients must
not be released until the backup is able to recover the primary
state past the point of sending those packets.

Requirements (1) and (2) have been handled in connection
with other mechanisms, such as [20, 60]. With RRC, this is
done by routing incoming and outgoing packets through the
backup (§3). Incoming packets are recorded by the PackRec
thread in the agent. Outgoing packets are sent to the backup
as part of the nondeterministic event log.

The PackGate kernel module on the backup is used to meet
requirement (3). PackGate maintains a release sequence num-
ber (RSN) for each TCP stream. When the primary container
sends an outgoing message, the nondeterministic event log it
sends to the backup (§3) includes a release request that up-
dates the stream’s RSN. The outgoing packets with sequence
numbers lower than the RSN are then released.

PackGate is implemented in the kernel since it operates
frequently and must thus be efficient. PackGate maintains
fairness among the TCP streams using a FIFO queue of re-
lease requests ordered by the order of sends.

4.4 Transition to Live Execution

As with [38, 43] and unlike the deterministic replay tools for
debugging [44, 55–57], RRC needs to transition from replay
mode to live mode. This occurs when the backup replica
finishes replaying the nondeterministic event log, specifically,
when the last system call that generated an external output
during the original execution is replayed. To identify this last
call, after the checkpoint is restored, the RR library scans the
nondeterministic event log and counts the number of system
calls that generated an external output. Once replay starts,
this count is atomically decremented and the transition to live
execution is triggered when the count reaches 0.

To support live execution, after replay, the kernel state must
be consistent with the state of the container and with the state
of the external world. For most kernel state, this is achieved
by actually executing during replay system calls that change
kernel state. For example, this is done for system calls that
change the file descriptor table, such as open(), or change the
memory allocation, such as mmap(). However, this approach
does not work for system calls that interact with the external
world. Specifically, in the context of RRC, these are reads
and writes on sockets associated with a connection to an
external client. As discussed in §4.1, such calls are replayed
from the nondeterministic event log. However, there is still
a requirement of ensuring that, before the transition to live
execution, the state of the socket, e.g., sequence numbers,
must be consistent with the state of the container and with the
state of external clients.

To overcome the above challenge, when replaying system
calls that affect socket state, RRC records the state changes on
the sockets based on the nondeterministic event logs. When
the replay phase completes, RRC updates all the sockets based
on the recorded state. Specifically, the relevant components
of socket state are: the last sent sequence number, the last
acknowledged (by the client) sequence number, the last re-

ceived (from the client) sequence number, the receive queue,
and the write queue. The initial socket state is obtained from
the checkpoint. The updates to the sent sequence number and
the write queue contents are determined based on writes and
sends in the nondeterministic event log. For the rest of the
socket state, RRC cannot rely on the event log since some
packets received and acknowledged by the kernel may not
have been read by the application. Instead, RRC uses infor-
mation obtained from PackRec (§4.3).

With respect to incoming packets, once the container tran-
sitions to live execution, RRC must provide to the container
all the packets that were acknowledged by the primary but
were not read by applications. During normal operation, on
the backup host, PackRec keeps copies of incoming packets
while PackGate extracts the acknowledgment numbers on
each outgoing stream. If the primary fails, PackGate stops re-
leasing outgoing packets and it thus has the last acknowledged
sequence number of each incoming stream. PackRec obtains
the last acknowledged sequence number of each stream from
PackGate and stops recording when it has all the required
(acknowledged) incoming packets. Before the container is re-
stored on the backup, PackRec copies the recorded incoming
packets to a log. Using the information from the nondeter-
ministic event log and PackRec, before the transition to live
execution, the packet repair mode (§2.1) is used to restore
the socket state so that it is consistent with the state of the
container and the external world.

4.5 Transferring the Event Logs

Whenever the container on the primary sends a message to
an external client, it must collect the corresponding entries
from the multiple nondeterministic event logs (§4.1) and send
them to the backup (§3). Hence, the collection and sending
of the log is a frequent activity, which is thus performance
critical. Specifically, with our initial implementation, with the
Memcached benchmark under maximum load, the throughput
overhead was approximately 300%.

To address the performance challenge above, RRC offloads
the transfer of the nondeterministic event log from the ap-
plication threads to a dedicated logging thread added by the
RR library to the application process (as in [47]). With avail-
able CPU cycles, such as additional cores, this minimizes the
overhead for the application threads. Furthermore, if multiple
application threads generate external messages at approxi-
mately the same time, the corresponding multiple transfers of
the logs are batched together, further reducing the overhead.
When an application thread sends an external message, it no-
tifies the logging thread via a shared ring buffer. The logging
thread continuously collects all the notifications in the ring
buffer and then collects and sends the nondeterministic logs to
the backup. To reduce CPU usage and enable more batching,
the logging thread sleeps for the minimum time allowed by
the kernel between scans of the buffer.

To maximize performance, RRC allows concurrent access
to different logs. One application thread may log a lock opera-
tion concurrently with another thread that is logging a system
call, while the logging thread is collecting log entries from a
third log for transfer to the backup. This enables the logging
thread to collect entries from different logs out of execution
order. Thus, there is the potential for the log transferred to the
backup for a particular outgoing message to be incomplete –
missing an entry for an event on which the outgoing message
depends. This can lead to replay failure.

There are two key properties of RRC that help address the
correctness challenge above: (A) there is no need to replay
the nondeterministic event log beyond the last system call that
outputs to the external world, and (B) when an application
thread logs a system call that outputs to the external world,
all nondeterministic events on which this system call may
depend are already logged in nondeterministic event logs.

To exploit the two properties above, the RR library main-
tains two corresponding global sequence numbers: primary
batch sequence number (PBSN) and backup batch sequence
number (BBSN) in the primary and backup, respectively.
They are both initialized to 0. Application threads attach
the PBSN to the entries they log for nondeterministic events.
When the logging thread picks up an entry from the afore-
mentioned ring buffer, that is a request to collect and send the
current event log. Before taking any other action, the logging
thread scans the ring buffer to determine the number of pend-
ing requests. It then increments the PBSN by that number.
Thus, every event log entry that is created after the logging
thread begins collecting the log, has a higher PBSN tag. After
the logging thread sends the log, it sends to the backup a mes-
sage that directs the backup to increment the BBSN by the
most recent increment of the PBSN. If the primary fails, be-
fore replay is initiated on the backup, all the nondeterministic
event logs collected during the current epoch are scanned and
the entries for system calls that output to the external world
are counted if their attached sequence number is not greater
than the BBSN. During replay, this count is decremented for
each such system call replayed. When it reaches 0, replay
terminates and live execution commences.

4.6 Container Fork

The new container fork (cfork) system call is based on the
existing process fork. Given a process ID in a container, cfork
duplicates the container state shared among its processes and
threads: namespaces (e.g., mount points, network interfaces)
and control groups. Cfork then duplicates all the processes
and their threads in the container and assigns them to the new
container. Fork duplicates the file descriptor state, but does
not duplicate the underlying state, such as socket state or pipe
state. However, cfork does duplicate this underlying state.

The implementation of cfork for RRC includes optimiza-
tions to minimize the container fork time. We identified two

major sources of overhead: (1) duplicating the namespaces
and control groups, and (2) page table copy. To minimize (1),
RRC exploits the fact that most namespace and control group
state rarely changes after initialization [62]. Thus, at the first
checkpoint, RRC creates a staging container with an idle pro-
cess. Cfork assigns the forked container to the namespace and
control group of the staging container instead of creating new
ones. To ensure correctness, RRC detects state changes of
the namespaces and control groups of the service container
using hooks, added with ftrace to the kernel functions that can
change the namespace and cgroup state. Cfork updates those
changes to the staging container. Ftrace only incurs overhead
if a hooked function is invoked. Since the namespace and
cgroup states rarely change, such functions are rarely invoked
and ftrace does not incur high overhead.

To minimize the latency of the page table copy, RRC avoids
copying the page table of the data region of the RR library,
whose size can be up to several gigabytes and thus takes tens
of milliseconds to copy. Specifically, the RR library tags the
VMA of the data region with a new special flag and thus
informs the cfork to skip copying its page table. This opti-
mization is correct because RRC does not need to checkpoint
the data region of the RR library; its state is initialized upon re-
play by reading the saved nondeterministic logs in the backup.

4.7 Mitigating the Impact of Data Races

As discussed in §3, RRC includes mechanisms that signifi-
cantly increase the probability of successful recovery in the
presence of rarely-manifested data races. Specifically, RRC
mitigates the impact of data races by adjusting the relative
timing of the application threads during replay to approxi-
mately match the timing during the original execution. As
a first step, in the record phase, the RR library records the
order and the TSC (time stamp counter) value when a thread
leaves the after hook of a system call. In the replay phase,
the RR library enforces the recorded order on threads before
they leave the after hook. As a second step, during replay,
the RR library maintains the TSC value corresponding to the
time when the after hook of the last-replayed system call was
exited. When a thread is about to leave a system call after
hook, the RR library delays the thread until the difference
between the current TSC and the TSC of that last-replayed
system call is larger than the corresponding difference in the
original execution. System calls are used as the basis for the
timing adjustments since they are replayed (not executed) and
are thus likely to cause the timing difference. This mechanism
is evaluated in §6.3.

5 Experimental Setup
All the experiments were hosted on Fedora 29 with the 4.18.16
Linux kernel. The containers were hosted using runC [12]
(version 1.0.1), a popular container runtime used in Docker.
The primary and backup replicas were hosted on different

36-core servers, using modern Xeon chips. These hosts were
connected to each other through a dedicated 10Gb Ethernet
link. The clients were hosted on a 10-core server, based on a
similar Xeon chip. The client host was in a different building,
interconnected through a Cisco switch, using 1Gb Ethernet.

Five benchmarks were in-memory databases handling short
requests: Redis [13], Memcached [10], SSDB [15], Taran-
tool [16] and Aerospike [2]. These benchmarks were evalu-
ated with 50% read and 50% write requests to 100,000 100B
records, driven by YCSB [31] clients. The number of user
client threads ranged from 60 to 480. The evaluation also in-
cluded a web server, Lighttpd [7], and two batch PARSEC [26]
benchmarks: Swaptions and Streamcluster. Lighttpd was eval-
uated using 20-40 clients retrieving a 1KB static page. For
Lighttpd, benchmarking tools SIEGE [14], ab [1] and wget [5]
were used to evaluate, respectively, the performance overhead,
response latency, and recovery rate. Swaptions and Stream-
cluster were evaluated using the native input test suites. We
evaluated only two benchmarks from the PARSEC suite since
RRC targets server applications and its design is thus focused
on low latency overhead. Low latency overhead is not rele-
vant for the batch applications, such as those included in the
PARSEC suite. Nonetheless, we show that such applications
can be handled by RRC with very low throughput overhead.

We used fault injection to evaluate RRC’s recovery mech-
anism. Since fail-stop failures are assumed, a simple failure
detector was sufficient. Failures were detected based on heart
beats exchanged every 30ms between the primary and backup
hosts. The side not receiving heart beats for 90ms identified
the failure of the other side and initiates recovery.

For Swaptions and Streamcluster, recovery was “successful”
if the output was identical to the golden copy. For Lighttpd,
we used multiple wget instances that concurrently fetched a
static page. Recovery was “successful” if all the fetched pages
were identical to the golden copy. For the in-memory database
benchmarks, we developed customized clients, using existing
client libraries [3, 9, 11, 17], that spawn multiple threads and
let each thread work on separate set of database records. Each
thread records the value it stores with each key, compares
that value with the value returned by the corresponding get
operation and flags an error if there is a mismatch. Recovery
was considered successful if no errors were reported.

For the fault injection experiments, for server programs, the
clients were configured to run for at least 30 seconds and drive
the server program to consume around 50% of the CPU cycles.
A fail stop failure was injected at a random time within the
middle 80% of the execution time, using the sch_plug module
to block network traffic on all the interfaces of a host. To
emulate a real world cloud computing environments, while
also stressing the recovery mechanism, we used a perturb
program to compete for CPU resources on the primary host.
The perturb program busy loops for a random time between
20 to 80 ms and sleeps for a random time between 20 to
120ms. During fault injection, a perturb program instance

TP Overhead Avg. Latency(µs)
Redis Taran Aero Redis Taran Aero

Custom 49% 31% 153% 574 471 456
RRC-LE 31% 26% 47% 543 564 602

Table 1: Throughput overhead and average latency. RRC vs.
custom replication mechanisms.

was pinned to each core executing the benchmark.

6 Evaluation
This section presents RRC’s performance overhead and CPU
usage overhead (§6.1), the added latency for server responses
(§6.2), as well as the recovery rate and recovery latency (§6.3).
Two configurations of RRC are evaluated: RRC-SE (short
epoch) and RRC-LE (long epoch), with epoch durations of
100ms and 1s, respectively. Setting the epoch duration is a
tradeoff between the lower overhead with long epochs and
the lower susceptibility to data races and lower recovery time
with short epochs. Hence, RRC-LE may be used if there is
high confidence that the applications are free of data races.
Thus, with the RRC-SE configuration, the data race mitigation
mechanism described in §4.7 is turned on, while it is turned
off for RRC-LE.

RRC is compared to NiLiCon (§2.1) with respect to the
performance overhead under maximum CPU utilization and
the server response latency. NiLiCon is configured to run with
an epoch interval of 30ms, as in [62]. The short epochs of NiL-
iCon are required since, unlike RRC, the epoch duration with
NiLiCon determines the added latency in replying to client
requests (§2.1). Thus, for many server applications, even with
30ms epochs, NiLiCon provides unacceptably long response
latencies. In all cases, the “stock setup” is the application
running in an unreplicated container.

Some server applications can be configured to enable their
own custom fault tolerance mechanisms. However, develop-
ing and validating such mechanisms is time consuming and
error prone. Hence, mechanisms, such as RRC, that can be de-
ployed for many applications, are likely to be of higher quality
(reliability) and incur lower total development cost. Table 1
compares the overhead of RRC with the custom mechanisms
of three of our benchmarks (§5). The custom mechanisms are
all configured to provide strong consistency (outputs are not
released until the changes are reflected in the backup), which
RRC also provides. The results show that RRC-LE actually
has lower throughput overhead. On average, the custom mech-
anisms do result in lower response latency. This is mainly due
to their ability to release the outputs of read requests without
waiting for acknowledgments from the backup. However, on
average, the overall results are comparable.

6.1 Overheads: Performance, CPU Utilization
Two key overhead measures of RRC are: for a fixed amount
of work, the increase in execution time and the increase in
the utilization of CPU cycles. These measures are distinct

0% 20% 40% 60% 80% 100% 120% 140%

Record

Pause

COW

Others, mostly page faults

18%
4%
4%

31%
5%

2%

25%
18%
17%

56%
46%

31%

62%
37%

26%

85%

52%

35%
17%

128%

47%

139%

48%

62%

SwapT

StrmC

Lig

Redis

Taran

SSDB

Mem$

Aero
NILI
SE
LE

NILI
SE
LE

NILI
SE
LE

NILI
SE
LE

NILI
SE
LE

NILI
SE
LE

NILI
SE
LE

NILI
SE
LE

Figure 3: Performance overheads: NiLiCon, RRC-SE, RRC-
LE.

since many of the actions of RRC are in parallel with the main
computation threads.

For the six server benchmarks, the measurements reported
in this subsection were done with workloads that resulted in
maximum CPU utilization for the cores running the applica-
tion worker threads1 with the stock setup.

With four of the server benchmarks, the number of the
worker threads cannot be configured (Lighttpd, Redis: 1,
Tarantool: 2, SSDB: 12). The remaining four benchmarks
were configured to run with four worker threads.

For each benchmark, the workload that saturates the cores
in the stock setup was used for the stock, RRC, and NiLiCon
setups. With NiLiCon, due to its large latency overhead (§6.2),
it is impossible to saturate the server with this setup. Hence,
for the NiLiCon measurements in this subsection, the buffer-
ing of the server responses was removed. This is not a valid
NiLiCon configuration, but it provides a comparison of the
overheads excluding buffering of external outputs.
Performance overhead. The performance overhead is re-
ported as the percentage increase in the execution time for
a fixed amount of work compared to the stock setup. Fig-
ure 3 shows the performance overheads of NiLiCon, RRC-SE,
and RRC-LE, with the breakdown of the sources of overhead.
Each benchmark was executed 50 times. The margin of error
of the 95% confidence interval was less than 2%.

The record overhead is caused by the RR library recording
nondeterministic events. The pause overhead is due to the
time the container is paused during the container fork. The
COW overhead is caused by the time to copy the pages after
the container fork. The page fault overhead is caused by the
page fault exceptions that track the memory state changes of
each epoch (§2.1).

With RRC-SE, the average incremental checkpoint size
per epoch was 0.2MB for Swaptions, 15.6MB for Redis, and
41.2MB for Aerospike. With RRC-SE, the average number of

1Some application “helper threads” are mostly blocked sleeping.

WWSS Redis Taran SSDB Mem$
1x 47% (1.00) 37% (1.00) 53% (1.00) 36% (1.00)
2x 56% (1.19) 51% (1.38) 57% (1.08) 58% (1.61)
3x 73% (1.55) 63% (1.70) 62% (1.17) 73% (2.03)

Table 2: The impact of the write working set size (WWSS),
relative to the WWSS used in Figure 3, on the performance
overhead with RRC-SE. The overheads relative to the 1x case
are in prentheses.

ST SC Lig Redis Taran SSDB Mem$ Aero

C
P Primary 3% 5% 8% 30% 16% 8% 13% 31%

Backup 1% 2% 5% 26% 15% 4% 13% 18%

R
R Primary 4% 1% 34% 47% 46% 55% 36% 77%

Backup ∼0 ∼0 33% 29% 20% 11% 15% 19%

T
C

P Primary ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0
Backup ∼0 ∼0 59% 86% 54% 23% 40% 43%

total 8% 8% 139% 218% 151% 101% 117% 188%

Table 3: CPU utilization overhead for RRC-SE. CP: check-
pointing. RR: recording nondeterministic events. TCP: han-
dling TCP failover.

logged lock operations plus system calls per epoch was 9 with
Streamcluster, 907 with Tarantool, and 2137 with Aerospike,
partially explaining the differences in record overhead. How-
ever, the overhead of logging system calls is much higher than
for lock operations. Memcached is comparable to Aerospike
in terms of the rate of logged system calls plus lock opera-
tions, but has 341 compared to 881 logged system calls per
epoch and thus lower record overhead.

The number of pages modified during an epoch determines
the rate of page faults and COW operations, as well as the size
of the incremental checkpoint that is transferred to the backup
(§3). Hence, this write working set size (WWSS) impacts the
performance overhead. Table 2 shows the performance over-
head of RRC-SE with four of our benchmarks as the WWSS is
increased to 2x and 3x of the WWSS used in Figure 3. These
measurements were obtained by increasing the number of
records and then, with a fixed number of records, varying the
ratio of writes to reads to obtain the different WWSS values.
As expected, the checkpointing component of the overhead
(“COW” plus “Others” in Figure 3) increases approximately
linearly with the WWSS. As shown in Figure 3, as the epoch
duration is increased, the checkpointing component of the
overhead is decreased and thus the impact of the WWSS be-
comes less significant. It should be noted that the number of
pages read during an epoch has no impact on the performance
overhead. The footprint of the application has only negligible
impact that is due to the time to scan the page table to identify
the modified pages.
CPU utilization overhead. The CPU utilization (Table 3)
is the product of the average numbers of CPUs (cores) used
and the total execution time. The CPU utilization overhead
is the percentage increase in utilization with RRC compared
to with the stock setup. The breakdown of the overhead into
its components was obtained by incrementally enabling each
component and measuring the corresponding increase in CPU

Lig1K Lig100K Redis Taran SSDB Mem$ Aero

S avg 549 2059 406 393 388 643 373
99% <1ms <3ms 734 617 622 2982 711

R avg 694 2203 604 604 651 812 663
99% <1ms <3ms 969 992 988 3941 1273

N avg 38ms 38ms 42ms 42ms 45ms 45ms 51ms
99% <39ms <39ms 44ms 42ms 47ms 53ms 63ms

Table 4: Response latency in µs. S: Stock, R: RRC-SE, N:
NiLiCon

overhead. A significant factor in the CPU utilization overhead
is for packet handling in the backup kernel needed to support
TCP failover. This overhead is mostly due to routing. Tech-
niques for optimizing software routing [42] can be used to
reduce this overhead.

The overheads shown in Table 3 should be evaluated in
the context of comparable alternative techniques. The only
alternatives that can achieve low latency overheads neces-
sary for many server applications are based on active repli-
cation [38, 47]. Such techniques have CPU overheads com-
parable to RRC’s for recording nondeterministic events and
handling TCP failover. They do not have the overhead for
checkpointing but instead have 100% overhead for execution
on the backup. Table 3 shows the with RRC-SE the overhead
for checkpointing is 4%-56%. Hence, RRC’s CPU overhead
is significantly smaller than the comparable alternatives’.
Performance decoupling. An important property of RRC is
that, unlike active replication, it decouples the performance
of the application on the primary host from the performance
on the backup. To illustrate the impact of this, we selected
two representative benchmarks: Redis and Aerospike, which
incur a significant CPU usage on the backup host, and ran
them with RRC-SE. We ran the perturb program (§5), which
consumes 40% of a CPU, first on all the cores of the primary
and then the backup. When the perturb program runs on the
primary, the performance overhead increases from 46% to
71% and 85% to 116% for Redis and Aerospike, respectively.
However, when the perturb program runs on the backup, the
execution time remains the same.

6.2 Response Latency
Table 4 shows the response latencies with the stock setup,
RRC-SE and NiLiCon. The numbers of client threads for stock
and RRC-SE are adjusted so that the CPU load on the cores
running application worker threads is 50%. For NiLiCon, the
number of client threads is the same as with RRC-SE, resulting
in CPU utilization of less than 5%, thus favoring NiLiCon.
To evaluate the impact of response size, Lighttpd is evaluated
serving both 1KB as well as 100KB files.

With RRC, there are three potential sources for the in-
crease in response latency: forwarding packets through the
backup, the need to delay packet release until the correspond-
ing event log is received by the backup, and increased request
processing time on the primary. With RRC-SE, the increase

ST SC Lhttpd Redis Taran SSDB Mem$ Aero
C

F avg 0.7 2.7 0.5 1.6 2.4 2.6 1.5 3.2
90% 0.7 3.1 0.6 1.9 2.7 2.9 1.7 3.5

N
C

F avg 5.9 7.6 7.2 14.9 18.4 13.9 28.7 42.9
90% 5.9 8.0 7.4 16.7 20.2 14.8 33.7 45.8

Table 5: The pause time of RRC with container fork (CF) and
without container fork (NCF) in millisecond.

ST SC Lhttpd Redis Taran SSDB Mem$ Aero
avg 3.1 3.9 2.5 9.1 11.5 6.5 15.6 27.4

Table 6: The average time (ms) between resuming container
execution and the stop of COW.

 0

 1000

 2000

 3000

 4000

 0 5 10 15 20 25 30R
e
sp

o
n
se

 L
a
te

n
cy

 (
u
s)

Time since container fork (ms)

Memcached

 0

 150

 300

 450

 0 5 10 15 20 25 30

#
 o

f
p

a
g

e
 c

o
p

ie
s

Time since container fork (ms)

Figure 4: Average response latency and the number of COW
since container fork.

in average latency is only 144µs to 290µs. The worst case is
with Aerospike, which has the highest checkpointing overhead
(COW+Others in Figure 3) and a high rate of nondetermin-
istic events and thus long logs that have to be transferred to
the backup. The increase in 99th percentile latency is 235µs
to 959µs. The worst case is with Memcached. As shown in
Table 4, in terms of increase in response latency, NiLiCon is
not competitive, as also indicated by the results in [62].

With RRC-LE, the increase in the average response latency
is from 42µs to only 229µs, due to the the lower checkpointing
overhead. The increase in the 99th percentile latency is under
510µs since the container fork are much less frequent and
thus less likely to interrupt the processing of a request.
The impact of container fork. The tail response time latency
overhead is determined by the time the primary is paused for
checkpointing. Table 5 shows RRC’s pause time with and
without the container fork. Without the container fork, the
container has to be paused during the entire checkpointing
process, leading to a pause time between 5.9ms to 45.8ms.
The pause time with the container fork is only from 0.5ms
to 3.5ms. Most of the container fork time is spent on copy-
ing page tables and thus can be further reduced with recent
techniques on optimizing fork() [61].

Due to the reduction in the pause time, with the SE setup,
the container fork reduces the average response latency over-
head from 156µs-581µs to 144µs-290µs, and the worst-case
99% response latency overhead from 6ms to 959µs. The
throughput overhead is reduced from 8%-145% to 4%-85%.

Immediately after the container fork there is a period dur-
ing which there is additional overhead due to COW of pages
on the primary (§3). Table 6 shows that this period termi-
nates at an early stage of each epoch. To evaluate the impact
of the COW on response latency, we obtained fine grained
measurements with Memcached. Figure 4 shows the results.

Recovery Rate Replay Time
Mem$ Aero Mem$ Aero

10
0m

s stock 94.3% 84.5% 20 28
+ Total order of syscalls 94.3% 92.7% 131 299
+ Timing adjustment 99.2% 99.8% 234 383

1s

stock 51.4% 34.8% 249 373
+ Total order of syscalls 51.6% 76.5% 1122 1345
+ Timing adjustment 99.0% 99.4% 1230 1460

Table 7: Recovery rate and replay time (in ms). RRC with
different levels of mitigation of data race impact.

Immediately after the container fork, due to the pause and a
high rate of page copies, the response latency is around 3.5ms.
However, the response latency almost immediately drops to
around 1.5ms and then to 700µs, where it remains for the rest
of the epoch.

6.3 Recovery Rate and Latency
This subsection presents an evaluation of the recovery mech-
anism and the data race mitigation mechanism. The service
interruption time is obtained by measuring, at the client, the
increase in response latency when a fault occurs. The service
interruption time is the sum of the recovery latency plus the
detection time. With RRC, the average detection time is 90ms
(§5). Hence, since our focus is not on detection mechanisms,
the average recovery latency reported is the average service
interruption time minus 90ms.
Backup failure. 50 fault injection runs are performed for
each benchmark. Recovery is always successful. The service
interruption duration is dominated by the Linux TCP retrans-
mission timeout, which is 200ms. The other recovery events,
such as detector timeout and broadcasting the ARP requests
to update the service IP address, occur concurrently with this
200ms. Thus, the measured service interruption duration is
between 203ms and 208ms.
Primary failure recovery rate. Three of our benchmarks con-
tain data races that may cause recovery failure: Memcached,
Aerospike, and Tarantool. Running Tarantool with RRC-SE,
through 50 runs of fault injection in the primary, we find that,
due to data races, in all cases replay fails and thus recovery
fails. Due to the high rate of data race manifestation, this is
the case even with the mechanism described in §4.7. Thus,
we use a version of Tarantool in which the data races are
eliminated by manually adding locks.

We divide the benchmarks into two sets. The first set con-
sists of the five data-race-free benchmarks and a modified
version of Tarantool. For these, 50 fault injections are per-
formed for each benchmark. Recovery is always successful.

The second set of benchmarks, Memcached and Aerospike,
is used to evaluate the the data race mitigation mechanisms
(§4.7). For these, to ensure statistically significant results,
1000 fault injection runs are performed with each benchmark
with each setup. The results are presented in Table 7. For both
the recovery rate and replay time, the 95% confidence interval

se le se le se le se le se le se le
Lig Redis Taran SSDB Mem$ Aero

818

200

400

600

800 763

647
573

676

442474
425409 358355 361

read log
restore

replay
others

Figure 5: Recovery latency (ms) breakdown with RRC-SE
and RRC-LE.

is less than 1%. Without the §4.7 mechanism, the recovery
rate for RRC-LE is much lower than with RRC-SE, demon-
strating the benefit of short epochs and thus shorter replay
times. Enforcing a total order of the recorded system calls in
the after hook is not effective for Memcached but increases
the recovery rate of Aerospike for both RRC setups. However,
with the timing adjustments, both benchmarks achieve high
recovery rates, even with RRC-LE. The total order of the sys-
tem calls is the main factor that increase the replay time. Thus,
there is no reason to not also enable the timing adjustments.

We measured the rate of racy memory accesses in Taran-
tool, Memcached and Aerospike. To identify “racy memory ac-
cesses”, we first fixed all the identified data races by protecting
certain memory access with locks. We then removed the added
locks and added instrumentation to count the corresponding
memory accesses. For Tarantool, the rates of racy memory
writes and reads are, respectively, 328,000 and 274,000 per
second. For Memcached the respective rates are 1 and 131,000
per second and for Aerospike they are 250 and 372,000 per
second. These results demonstrate that, when the rate of ac-
cesses potentially affected by data races is high, our mitigation
scheme is not effective. Fortunately, in such cases, data races
are unlikely to remain undetected.
Primary failure recovery latency. Figure 5 shows a break-
down of the factors that make up the recovery latency for the
server benchmarks with RRC-SE and RRC-LE. With RRC-
SE, the data race mitigation scheme is enabled, while with
RRC-LE it is disabled. The 95% confidence interval margin
of error is less than 5%. Restore is the time to restore the
checkpoint, mostly for restoring the in-kernel states of the
container (e.g., mount points and namespaces). Read log is
the time to process the stored logs in preparation for replay.
Others include the time to send ARP requests and connect the
backup container network interface to the bridge.

The recovery latency differences among the benchmarks
are due mainly to the replay time. It might be expected that
the average replay time would be approximately half an epoch
duration. However, replay time is increased due to different
thread scheduling by the kernel that causes some threads
to wait to match the order of the original execution. This
increase is more likely when the data race impact mitigation
mechanism is enabled since it enforces more strict adherence

footprint Redis Taran SSDB Mem$ Aero
1x 409 (1.00) 425 (1.00) 442 (1.00) 573 (1.00) 763 (1.00)
2x 424 (1.04) 460 (1.08) 479 (1.08) 583 (1.02) 836 (1.10)
3x 463 (1.13) 493 (1.16) 524 (1.18) 609 (1.06) 917 (1.20)

Table 8: The impact of the footprint size, relative to the foot-
print size used in Figure 5, on the primary recovery latency
(in ms) with RRC-SE. The latencies relative to the 1x case are
in parentheses.

to the original execution. A second factor that impact the
replay time is a decrease due to system calls that are replayed
from the log and not executed.

With the current RRC implementation, the total memory
occupancy of the application, i.e., its footprint, has an im-
pact on the recovery latency. Specifically, during recovery
on the backup host, all the pages are copied from the mem-
ory area where they are saved during prior checkpointing to
new locations. Hence, as shown in Table 8, as the footprint
is increased, there is a small increase in the recovery latency.
In these measurements, the footprint was determined by the
final checkpoint size. It should be noted that the impact of
the footprint on recovery latency is a limitation of the current
implementation. An optimization with kernel support would
avoid copying the pages from one memory location to another
by simply updating the page table.

7 Limitations
An inherent limitation is that the mechanism used for mitigat-
ing the impact of data races (§4.7) is incapable of handling
a high rate of racy accesses (§6.3). However, as discussed in
§3, such data races are easily detectable and are thus easy to
eliminate, even in legacy applications.

The prototype implementation of RRC is restricted to
single-process containers. This is not a major restriction
since, in most cases, containers are used to run only a sin-
gle process. Cito et al. [30] analyzed 38,079 Docker projects
on Github and concluded that only 4% of the projects in-
volved multi-process containers. This is reinforced by Inter-
net searches regarding this issue that yield numerous hits on
pages, such as [23], that suggest that running single-process
containers is best practice. To overcome this limitation, the
RR library would need to support inter-process communica-
tions via shared memory. Techniques presented in [24] may
be applicable.

RRC also does not handle asynchronous signals. This can
be resolved by techniques used in [43], that delay signal de-
livery until a system call or certain page faults.

The current implementation of RRC only supports C/C++
applications. Adding support for non-C/C++ applications
would require instrumenting their runtimes to track nondeter-
ministic events. RRC does not handle C atomic types, func-
tions, intrinsics and inline assembly code that performs atomic
operations transparently. In this work, such cases were han-
dled by protecting such operations with locks.

8 Related Work
RRC is related to prior fault-tolerance works on replication
based on high-frequency checkpointing, replication based on
deterministic replay, and network connection failover.

Early work on VM replication is based on leader-follower
active replication using deterministic replay [27]. This is com-
bined with periodic checkpointing in [28], based on use of this
technique for debugging [41]. These works focused on unipro-
cessor systems. Extending them to multiprocessors is imprac-
tical, due to the overhead of recording shared memory access
order for a VM [37, 52]. Remus [33] (§2.1) and its follow-on
works [46, 53, 62] focus on multiprocessor workloads and
implement replication using high-frequency checkpointing.
Plover [58] optimizes Remus by using an active replica to re-
duce the size of transferred state and by performing state syn-
chronization adaptively, when VMs are idle. All the Remus-
based mechanisms release outputs only after the primary and
backup synchronize their states, Hence, outputs are delayed by
multiple (often, tens of) milliseconds. COLO [35] compares
outputs from two active VM replicas and synchronizes their
states on a mismatch, resulting in high throughput and latency
overheads for applications with significant nondeterminism.

For process-level checkpointing, libckpt [51] implements
“forked checkpointing,” where the unmodified fork() system
call is used to minimize the pause time for checkpointing.

To handle nondeterminism in parallel applications, as with
RRC, some works rely on replaying the order of synchroniza-
tion operations [32, 38, 47]. Rex [38] and Crane [32] cannot
handle state divergences caused by data races and require man-
ual modifications of the application source code. Castor [47]
handles data races by buffering outputs until the backup fin-
ishes replaying the associated logs. If divergence due to data
races occurs, the two replicas synchronize their state.

Comparing RRC with Rex, Crane, and Castor, for data-race-
free applications, RRC is likely to have a smaller throughput
overhead. Specifically, Rex reports that under heavy load,
replay may be slower than the original execution and thus the
active replica is a performance bottleneck. With a data-race-
free setup, both Rex and RRC are evaluated with Memcached,
and the performance overheads are 40% vs. 17%.

For applications that have data races, the only relevant com-
parison is with Castor. Castor is likely to have higher response
delays since outputs cannot be released until the backup fin-
ishes replaying the associated log. Additionally, a data race
can also cause Castor to fail. Specifically, if the primary fails
in the middle of state synchronization caused by a data race,
the system fails. Hence, for an application with a high rate of
racy memory accesses, such as Tarantool (§6.3), Castor would
be frequently synchronizing the state and thus have low recov-
ery rate (like RRC) and also high performance overhead. For
applications with a lower rate of racy memory accesses, such
as Memcached and Aerospike, Castor also has lower recov-
ery rate. For example, for Memcached, based on Table 7, the
probability of execution divergence in 50ms is 0.059. Hence,

execution diverges approximately every 0.85s. With our setup,
the time it takes to create and transfer the checkpoint for Mem-
cached is 48ms. Hence, an upper bound on the recovery rate
with Castor is expected be 94.7% versus 99.2% with RRC
(Table 7). A similar calculation for Aerospike, taking into ac-
count 76ms to create and transfer the checkpoint, results in a
recovery rate for Castor of 79.8% versus 99.8% for RRC.

9 Conclusion
RRC is a unique point in the design space of application-
transparent fault tolerance schemes for multiprocessor work-
loads. By combining checkpointing, with externally determin-
istic replay, and container fork, it provides all the desirable
properties of a fault tolerance scheme listed in §1, with spe-
cific emphasis on low latency overhead, which is critical for
server applications. RRC facilitates trading off performance
and resource overheads with vulnerability to data races and
recovery latency. Critically, the response latency is decoupled
from the frequency of checkpointing, and sub-millisecond
added delay is achieved with all our server applications. RRC
is a full fault tolerance mechanism. It can recover from pri-
mary or backup host failure and includes transparent failover
of TCP connections.

As we have found (§6.3), legacy applications may have
data races. RRC targets data races that are most likely to re-
main undetected and uncorrected, namely, rarely-manifested
data races. Unlike mechanism based strictly on active repli-
cation and deterministic replay [38], RRC is not affected by
data races that manifest during normal operation, long before
failure. For data races that manifest right before failure, RRC
introduces simple mechanisms that significantly reduce the
probability of the data races causing recovery failure.

This paper describes key implementation challenges en-
countered in the development of RRC and outlines their reso-
lution. The extensive evaluation of RRC, based on eight bench-
marks, included performance and resource overheads, impact
on response latency, as well as recovery rate and latency.
The recovery rate evaluation, based on fault injection, sub-
jected RRC to particularly harsh conditions by intentionally
perturbing the scheduling on the primary, thus challenging
the deterministic replay mechanism (§5). With high check-
pointing frequency (RRC-SE), RRC’s throughput overhead is
less than 53% for seven of our benchmarks and 85% for the
eighth. If the applications are known to be data-race-free, with
a lower checkpointing frequency (RRC-LE), the overhead is
less than 49% for all benchmarks, significantly outperforming
NiLiCon [62]. With data-race-free applications, RRC recov-
ers from all fail-stop failures. With two applications with
infrequently-manifested data races, the recovery rate is over
99% with RRC-SE.

Acknowledgments
We thank our reviewers, especially our shepherd, for construc-
tive feedback that significantly improved this paper.

References
[1] ab - Apache HTTP server benchmarking tool. https://

httpd.apache.org/docs/2.4/programs/ab.html.

[2] Aerospike. https://https://www.aerospike.
com/.

[3] Aerospike C Client. https://www.aerospike.com/
apidocs/c/.

[4] CRIU: Checkpoint/Restore In Userspace. https://
criu.org/Main_Page.

[5] GNU Wget. https://www.gnu.org/software/
wget/.

[6] Google threadsanitizer. https://
github.com/google/sanitizers/wiki/
ThreadSanitizerCppManual.

[7] Home - Lighttpd. https://www.lighttpd.net/.

[8] Install Xen 4.2.1 with Remus and DRBD on Ubuntu
12.10. https://wiki.xenproject.org/wiki/
Install_Xen_4.2.1_with_Remus_and_DRBD_on_
Ubuntu_12.10.

[9] libMemcached. https://libmemcached.org/
libMemcached.html.

[10] memcached. https://memcached.org.

[11] Minimalistic C client for Redis. https://github.
com/redis/hiredis.

[12] opencontainers/runc. https://github.com/
opencontainers/runc.

[13] Redis. https://redis.io.

[14] Siege Home. https://www.joedog.org/
siege-home/.

[15] SSDB - A fast NoSQL database, an alternative to Redis.
https://github.com/ideawu/ssdb.

[16] Tarantool - In-memory DataBase. https://
tarantool.io.

[17] Tarantool C client libraries. https://github.com/
tarantool/tarantool-c.

[18] TCP connection repair. https://lwn.net/Articles/
495304/.

[19] Navid Aghdaie and Yuval Tamir. Client-Transparent
Fault-Tolerant Web Service. In 20th IEEE International
Performance, Computing, and Communications Confer-
ence, pages 209–216, Phoenix, AZ, April 2001.

[20] Navid Aghdaie and Yuval Tamir. CoRAL: A Transpar-
ent Fault-Tolerant Web Service. Journal of Systems and
Software, 82(1):131–143, January 2009.

[21] Gautam Altekar and Ion Stoica. ODR: Output-
Deterministic Replay for Multicore Debugging. In ACM
SIGOPS 22nd Symposium on Operating Systems Princi-
ples, page 193–206, Big Sky, Montana, USA, October
2009.

[22] Lorenzo Alvisi, Thomas C. Bressoud, Ayman El-
Khashab, Keith Marzullo, and Dmitrii Zagorodnov.
Wrapping Server-Side TCP to Mask Connection Fail-
ures. In IEEE INFOCOM, pages 329–337, Anchorage,
AK, April 2001.

[23] Rafael Benevides. 10 Things to Avoid
in Docker Containers. https://
developers.redhat.com/blog/2016/02/24/
10-things-to-avoid-in-docker-containers,
February 2016. Accessed: 2022-04-25.

[24] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D.
Gribble. Deterministic Process Groups in dOS. In 9th
USENIX Conference on Operating Systems Design and
Implementation, page 177–191, Vancouver, BC, Canada,
October 2010.

[25] David Bernstein. Containers and Cloud: From LXC to
Docker to Kubernetes. IEEE Cloud Computing, 1(3):81–
84, September 2014.

[26] Christian Bienia. Benchmarking Modern Multiproces-
sors. PhD thesis, Princeton University, January 2011.

[27] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-
based Fault Tolerance. In 15th ACM Symposium on Op-
erating Systems Principles, Copper Mountain, Colorado,
USA, December 1995.

[28] Peter M. Chen, Daniel J. Scales, Min Xu, and
Matthew D. Ginzton. Low Overhead Fault Tolerance
Through Hybrid Checkpointing and Replay, August
2016. Patent No. 9,417,965 B2.

[29] Yunji Chen, Shijin Zhang, Qi Guo, Ling Li, Ruiyang
Wu, and Tianshi Chen. Deterministic Replay: A Survey.
ACM Computing Surveys, 48(2):17:1–17:47, September
2015.

[30] Jurgen Cito, Gerald Schermann, John Erik Wittern,
Philipp Leitner, Sali Zumberi, and Harald C. Gall. An
Empirical Analysis of the Docker Container Ecosystem
on GitHub. In IEEE/ACM 14th International Confer-
ence on Mining Software Repositories, pages 323–333,
Buenos Aires, Argentina, May 2017.

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://https://www.aerospike.com/
https://https://www.aerospike.com/
https://www.aerospike.com/apidocs/c/
https://www.aerospike.com/apidocs/c/
https://criu.org/Main_Page
https://criu.org/Main_Page
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://www.lighttpd.net/
https://wiki.xenproject.org/wiki/Install_Xen_4.2.1_with_Remus_and_DRBD_on_Ubuntu_12.10
https://wiki.xenproject.org/wiki/Install_Xen_4.2.1_with_Remus_and_DRBD_on_Ubuntu_12.10
https://wiki.xenproject.org/wiki/Install_Xen_4.2.1_with_Remus_and_DRBD_on_Ubuntu_12.10
https://libmemcached.org/libMemcached.html
https://libmemcached.org/libMemcached.html
https://memcached.org
https://github.com/redis/hiredis
https://github.com/redis/hiredis
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://redis.io
https://www.joedog.org/siege-home/
https://www.joedog.org/siege-home/
https://github.com/ideawu/ssdb
https://tarantool.io
https://tarantool.io
https://github.com/tarantool/tarantool-c
https://github.com/tarantool/tarantool-c
https://lwn.net/Articles/495304/
https://lwn.net/Articles/495304/
https://developers.redhat.com/blog/2016/02/24/10-things-to-avoid-in-docker-containers
https://developers.redhat.com/blog/2016/02/24/10-things-to-avoid-in-docker-containers
https://developers.redhat.com/blog/2016/02/24/10-things-to-avoid-in-docker-containers

[31] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. In 1st ACM Symposium
on Cloud Computing, pages 143–154, June 2010.

[32] Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and
Junfeng Yang. Paxos Made Transparent. In 25th Sympo-
sium on Operating Systems Principles, pages 105–120,
Monterey, California, October 2015.

[33] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike
Feeley, Norm Hutchinson, and Andrew Warfield. Re-
mus: High Availability via Asynchronous Virtual Ma-
chine Replication. In 5th USENIX Symposium on Net-
worked Systems Design and Implementation, pages 161–
174, April 2008.

[34] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer.
On the Minimal Synchronism Needed for Distributed
Consensus. Journal of the ACM, 34(1):77–97, January
1987.

[35] YaoZu Dong, Wei Ye, YunHong Jiang, Ian Pratt,
ShiQing Ma, Jian Li, and HaiBing Guan. COLO:
COarse-grained LOck-stepping Virtual Machines for
Non-stop Service. In 4th ACM Annual Symposium on
Cloud Computing, Santa Clara, CA, October 2013.

[36] George W. Dunlap, Samuel T. King, Sukru Cinar, Mur-
taza A. Basrai, and Peter M. Chen. ReVirt: Enabling
Intrusion Analysis through Virtual-Machine Logging
and Replay. In 5th Symposium on Operating Systems
Design and Implementation, pages 211–224, Boston,
MA, USA, December 2003.

[37] George W. Dunlap, Dominic G. Lucchetti, Michael A.
Fetterman, and Peter M. Chen. Execution Replay of
Multiprocessor Virtual Machines. In Fourth ACM SIG-
PLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments, page 121–130, Seattle, WA, USA,
March 2008.

[38] Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou,
Lidong Zhou, and Li Zhuang. Rex: Replication at the
Speed of Multi-Core. In 9th European Conference on
Computer Systems, pages 161–174, Amsterdam, The
Netherlands, April 2014.

[39] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei
Xu, Ming Wu, M. Frans Kaashoek, and Zheng Zhang.
R2: An Application-Level Kernel for Record and Re-
play. In 8th USENIX Conference on Operating Systems
Design and Implementation, page 193–208, San Diego,
CA, USA, December 2008.

[40] Derek R. Hower and Mark D. Hill. Rerun: Exploit-
ing Episodes for Lightweight Memory Race Recording.

In 35th Annual International Symposium on Computer
Architecture, page 265–276, Beijing, China, June 2008.

[41] Samuel T. King, George W. Dunlap, and Peter M. Chen.
Debugging Operating Systems with Time-Traveling Vir-
tual Machines. In 2005 USENIX Annual Technical Con-
ference, pages 1–15, Anaheim, CA, USA, April 2005.

[42] Eddie Kohler, Robert Morris, Benjie Chen, and John
Jannottiand Frans M. Kaashoek. The Click Modu-
lar Router. ACM Transactions on Computer Systems,
18(3):263–297, August 2000.

[43] Oren Laadan, Nicolas Viennot, and Jason Nieh. Trans-
parent, Lightweight Application Execution Replay on
Commodity Multiprocessor Operating Systems. In ACM
SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems, page 155–166,
New York, New York, USA, June 2010.

[44] Dongyoon Lee, Benjamin Wester, Kaushik Veeraragha-
van, Satish Narayanasamy, Peter M. Chen, and Jason
Flinn. Respec: Efficient Online Multiprocessor Re-
playvia Speculation and External Determinism. In
Fifteenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, page 77–90, Pittsburgh, Pennsylvania, USA,
March 2010.

[45] Wubin Li, Ali Kanso, and Abdelouahed Gherbi. Lever-
aging Linux Containers to Achieve High Availability
for Cloud Services. In IEEE International Conference
on Cloud Engineering, pages 76–83, March 2015.

[46] Jacob R. Lorch, Andrew Baumann, Lisa Vlendenning,
Dutch Meyer, and Andrew Warfield. Tardigrade: Lever-
aging Lightweight Virtual Machines to Easily and Ef-
ficiently Construct Fault-Tolerant Services. In 12th
USENIX Symposium on Networked Systems Design and
Implementation, Oakland, CA, May 2015.

[47] Ali Jose Mashtizadeh, Tal Garfinkel, David Terei, David
Mazieres, and Mendel Rosenblum. Towards Practical
Default-On Multi-Core Record/Replay. In 22nd Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, page 693–708,
Xi’an, China, April 2017.

[48] Robert H. B. Netzer and Barton P. Miller. What Are
Race Conditions?: Some Issues and Formalizations.
ACM Letters on Programming Languages and Systems,
1(1):74–88, March 1992.

[49] Marek Olszewski, Jason Ansel, and Saman Amaras-
inghe. Kendo: Efficient Deterministic Multithreading in

Software. In 14th International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, page 97–108, Washington, DC, USA,
March 2009.

[50] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning
Yin, Rini Kaushik, Kyu H. Lee, and Shan Lu. PRES:
Probabilistic Replay with Execution Sketching on Mul-
tiprocessors. In ACM SIGOPS 22nd Symposium on Op-
erating Systems Principles, SOSP ’09, page 177–192,
Big Sky, Montana, USA, October 2009.

[51] James S. Plank, Micah Beck, Gerry Kingsley, and Kai
Li. Libckpt: Transparent Checkpointing under Unix. In
USENIX 1995 Technical Conference, pages 213–224,
New Orleans, LA, January 1995.

[52] Shiru Ren, Le Tan, Chunqi Li, Zhen Xiao, and Weijia
Song. Samsara: Efficient Deterministic Replay in Mul-
tiprocessor Environments with Hardware Virtualization
Extensions. In 2016 USENIX Conference on Usenix
Annual Technical Conference, page 551–564, Denver,
CO, USA, June 2016.

[53] Shiru Ren, Yunqi Zhang, Lichen Pan, and Zhen Xiao.
Phantasy: Low-Latency Virtualization-based Fault Toler-
ance via Asynchronous Prefetching. IEEE Transactions
on Computers, 68(2):225–238, February 2019.

[54] Michiel Ronsse and Koen De Bosschere. RecPlay: A
Fully Integrated Practical Record/Replay System. ACM
Transactions on Computer Systems, 17(2):133–152,
May 1999.

[55] Yasushi Saito. Jockey: A User-Space Library for
Record-Replay Debugging. In Sixth International Sym-
posium on Automated Analysis-Driven Debugging, page
69–76, Monterey, California, USA, September 2005.

[56] Sudarshan M. Srinivasan, Srikanth Kandula, Christo-
pher R. Andrews, and Yuanyuan Zhou. Flashback: A
Lightweight Extension for Rollback and Deterministic
Replay for Software Debugging. In 2004 USENIX An-
nual Technical Conference, pages 29–44, Boston, MA,
USA, June 2004.

[57] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin
Wester, Jessica Ouyang, Peter M. Chen, Jason Flinn,
and Satish Narayanasamy. DoublePlay: Parallelizing
Sequential Logging and Replay. In Sixteenth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, page 15–26,
Newport Beach, California, USA, March 2011.

[58] Cheng Wang, Xusheng Chen, Weiwei Jia, Boxuan
Li, Haoran Qiu, Shixiong Zhao, and Heming Cui.
PLOVER: Fast, Multi-core Scalable Virtual Machine

Fault-tolerance. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation, pages 483–
499, Renton, WA, April 2018.

[59] Min Xu, Rastislav Bodik, and Mark D. Hill. A “Flight
Data Recorder” for Enabling Full-System Multiproces-
sor Deterministic Replay. In 30th Annual International
Symposium on Computer Architecture, page 122–135,
San Diego, California, USA, May 2003.

[60] Dmitrii Zagorodnov, Keith Marzullo, Lorenzo Alvisi,
and Thomas C. Bressoud. Practical and Low-Overhead
Masking of Failures of TCP-Based Servers. ACM Trans-
actions on Computer Systems, 27(2):4:1–4:39, May
2009.

[61] Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca.
On-demand-fork: A Microsecond Fork for Memory-
Intensive and Latency-Sensitive Applications. In 16th
European Conference on Computer Systems, pages 540–
555, Virtual, April 2021.

[62] Diyu Zhou and Yuval Tamir. Fault-Tolerant Containers
Using NiLiCon. In 34th IEEE International Parallel and
Distributed Processing Symposium, pages 1082–1091,
New Orleans, LA, May 2020.

[63] Diyu Zhou and Yuval Tamir. HyCoR: Fault-Tolerant
Replicated Containers Based on Checkpoint and Replay.
Computing Research Repository, arXiv:2101.09584
[cs.DC], January 2021.

	Introduction
	Background
	NiLiCon
	Deterministic Replay on Multiprocessors

	Overview of RRC
	Implementation
	Nondeterministic Events Record/Replay
	Integrating Checkpointing with Record/Replay
	Handling Network Traffic
	Transition to Live Execution
	Transferring the Event Logs
	Container Fork
	Mitigating the Impact of Data Races

	Experimental Setup
	Evaluation
	Overheads: Performance, CPU Utilization
	Response Latency
	Recovery Rate and Latency

	Limitations
	Related Work
	Conclusion

