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Abstract—To reduce operational costs, modern data centers co-
locate high-priority latency-critical (LC) tasks and low-priority
best-effort (BE) tasks on the same physical node to increase
resource utilization. However, such co-location leads to contention
for memory bandwidth, resulting in priority inversion, where BE
tasks severely slow down LC tasks. This priority inversion often
leads to violations of the quality of service (QoS) requirements for
LC tasks, defeating the purpose of co-location. Prior approaches
to this issue either fail to enforce the QoS requirements for LC
tasks or underutilize memory bandwidth.

We present PIVOT, a novel bandwidth partitioning system
that overcomes the limitations of prior approaches based on
two key insights. First, memory accesses from LC tasks must
be prioritized across all the components on the memory path
rather than a single component, as done in prior work. Second,
only the scheduling of a selective portion of performance-
critical loads (i.e., those causing a long stall on the re-order
buffer), instead of all memory accesses from LC tasks, should
be prioritized. To leverage these insights, PIVOT overcomes the
key challenge of accurately identifying performance-critical loads
while incurring minimal runtime overhead by proposing a two-
phase profiling technique. Our extensive evaluation shows that
PIVOT improves effective machine utilization by up to 34.5%
while increasing the throughput of the BE applications by up to
2.76× compared to state-of-the-art approaches.

I. INTRODUCTION

Modern data centers suffer from high operational costs,
mainly due to underutilized resources. Major industry practi-
tioners report that the core utilization rate can be less than 50%
for 90% of the operational time [18], [30]. Worse still, these
high operational costs are exacerbated by the ever-increasing
expenses of procuring and maintaining hardware [70].

To minimize operational costs, a common strategy is to
improve resource utilization by co-locating best-effort (BE)
tasks (e.g., big data analytics) with latency-critical (LC) tasks
(e.g., web search engines) on the same physical node [17],
[24], [45], [56], [70]. The service level on the BE tasks is
not guaranteed, so they should only be scheduled if resources
permit. Unlike BE tasks, LC tasks ultimately interact with hu-
man users and thus often come with Quality-of-Service (QoS)
requirements that must be met. Indeed, prior study [6] reports
that even an increase of 100 milliseconds of service time
results in millions of dollars lost for companies like Amazon.
Therefore, the scheduling of LC tasks should be prioritized
over BE tasks.

However, naively co-locating LC and BE tasks often leads
to priority inversion caused by contention for shared hard-
ware resources, such as memory bandwidth. Specifically, BE
tasks are often memory intensive, issuing a large number of
memory accesses, and thereby blocking those issued by LC
tasks. Such blocking slows down the execution of LC tasks,
increases their response latency, and ultimately violates the
QoS requirements, resulting in severe economic loss.

Existing mechanisms for such a priority inversion issue
suffer from severe limitations. Intel Memory Bandwidth Allo-
cation (MBA) [8] throttles the bandwidth usage of BE tasks by
aggressively inserting additional delays before the Last-Level
Cache (LLC). While this approach enforces QoS requirements,
it significantly underutilizes memory bandwidth (wasting up
to 62% as shown in Figure 2) and thus defeats the purpose
of task co-location. ARM Memory Partitioning and Monitor-
ing (MPAM) [3] prioritizes scheduling the memory access
requests issued by the LC task at the memory bandwidth
controller [72]. However, our evaluation finds that MPAM
cannot enforce the QoS requirements of LC tasks under heavy
bandwidth contention (§II-B). In summary, neither existing
mechanism resolves the inherent tension between enforcing
QoS requirements and maximizing bandwidth utilization, and
thus, they still cannot effectively reduce operational costs.

We present PIVOT, a novel and effective mechanism to pre-
vent priority inversion caused by bandwidth contention. PIVOT
overcomes the limitations of prior approaches by resolving
the aforementioned inherent tension with two key insights:
noitemsep,nolistsep

• First, to enforce QoS requirements, memory accesses
from LC tasks must be prioritized across all the
components on the memory path. This is because, un-
der heavy bandwidth contention, the queuing of memory
accesses in one component can propagate to upstream
components, eventually causing queuing in all the compo-
nents. Therefore, scheduling memory accesses in a single
component, as prior approaches do, is insufficient, since
the memory access can be blocked in any component.

• Second, to resolve the inherent tension, only the schedul-
ing of a small portion of performance-critical load
instructions, which causes a long stall on the re-order
buffer (ROB), should be prioritized. This is because,
with out-of-order execution, a long ROB stall implies that



other instructions are likely to depend on this load. Hence,
prioritizing the scheduling of such loads enables both
themselves and all dependent instructions to retire faster,
thereby effectively enabling the LC tasks to meet the
QoS requirements. Furthermore, prioritizing scheduling a
small portion of loads instead of all memory accesses as
prior approaches do incurs minimal interference with the
default scheduling algorithm and avoids underutilizing
memory bandwidth.

To leverage these insights, a key challenge PIVOT must
overcome is to accurately identify the performance-critical
loads. Naively collecting the ROB stall cycles for all loads
incurs prohibitive performance overhead. Instead, PIVOT pro-
poses a novel two-phase profiling technique. The first phase
is offline (i.e., conducted in a non-production environment),
where PIVOT co-locates an LC and a BE stress task to
identify loads that are highly unlikely to be critical under most
scenarios (e.g., a load accessing a memory address accessed
only a few instructions earlier) in the LC task. PIVOT achieves
this by collecting, for the LC task, the ROB stall cycles for
all the loads to form a set of potential performance-critical
loads. Due to the high runtime performance overhead, this
offline profiling lasts for 30 minutes, but it only needs to be
performed once for each LC task. As a result, the long profiling
time does not cause a problem since it takes data centers, on
average, at least a few days to release new task [38], [53].

The second phase is conducted in the production environ-
ment where PIVOT identifies the actual performance-critical
loads in the LC task by collecting the ROB stall cycles for only
the loads in the potential set, thereby minimizing performance
overhead.

We carefully design the memory access scheduling mecha-
nisms in PIVOT to achieve multiple goals simultaneously. First,
for each component on the memory path, PIVOT introduces a
priority queue for performance-critical loads, ensuring their
prioritized scheduling and preventing delays due to insuffi-
cient queuing space. In addition, PIVOT effectively prevents
starvation of BE tasks while also handling cases where more
than one LC task is co-located on the same physical node.

We implemented PIVOT on the Gem5 simulator [11] with
about 6.2K lines of code. Our extensive experiments demon-
strate that, since PIVOT overcomes the key limitations in
prior hardware mechanisms, it even outperforms state-of-art
hardware-software co-design approaches under various sce-
narios, improving the effective machine utilization [45] and
the throughput of BE applications by up to 34.5% and 2.76×,
respectively, while not causing QoS violation.

In summary, this paper makes the following contributions:
noitemsep,nolistsep

• Analysis. We thoroughly analyze the existing bandwidth
partitioning approaches and reveal their major limitations.

• Novel insights. We resolve the inherent tension between
enforcing QoS requirements and maximizing memory
bandwidth utilization by (1) enforcing access priority
across the full memory path; and (2) only prioritizing
the scheduling of performance-critical loads.

• PIVOT. We design PIVOT with two novel techniques: the
two-phase profiling and scheduler for memory access.

PIVOT is open-source, available at https://github.com/
TELOS-syslab/Pivot.

II. BACKGROUND AND MOTIVATION

This section first presents the problem PIVOT targets: mem-
ory bandwidth contention during task co-location (§II-A).
Next, it discusses the limitations of existing approaches for
addressing memory bandwidth contention (§II-B).

A. Opportunities and Challenges in Task Co-Location

Modern data centers often suffer from low resource uti-
lization, leading to significant economic losses. For example,
major industry partitioners such as Microsoft [18] and Al-
ibaba [30] report that their core utilization rate is between 20%
and 50% for as much as 90% of the time. This low resource
utilization forces data center owners to procure additional
hardware, significantly increasing operational costs [45], [70].

To improve resource utilization and thus minimize oper-
ational costs, data centers co-locate Latency-Critical (LC)
tasks with Best-Effort (BE) tasks on the same physical ma-
chines [45], [47]. LC tasks, such as web search engines,
key-value stores [26], interact with end human users and, as
a result, are often associated with Quality-of-Service (QoS)
requirements. QoS requirements must be met since violations
lead to significant economic loss. For example, as underscored
in several reports [6], users abandon video playback after
waiting for just three seconds. In addition, even an increase of
one hundred milliseconds of service time results in millions
of dollars lost for Amazon [6]. As a result, the resource usage
of LC tasks must be prioritized. Unlike LC tasks, BE tasks
run to completion without interacting with end users. Thus,
BE tasks can and should be scheduled only when the resource
permits. Some examples of BE tasks are big data analytics,
graph analytics, and large-scale scientific computing [1], [26],
[28], [30], [45].

However, naively co-locating tasks may, in turn, defeat
the purpose of cost-saving due to contention for shared
resources [45], [47], [62], [63]. This paper targets an es-
sential form of such contention: memory bandwidth con-
tention [17], [70]. Memory bandwidth contention occurs
because BE tasks are often memory-intensive; thus, during
execution, their frequent memory accesses clog the memory
access path. As we show in §II-B and reported by major
industry practitioners [70], such clogging blocks the memory
accesses issued by LC tasks, leading to QoS violations, thereby
resulting in significant economic losses.

B. Limitations in Existing Approaches

A common approach to addressing memory bandwidth con-
tention is to leverage the bandwidth partitioning mechanisms
available in modern servers, such as Intel Memory Bandwidth
Allocation (MBA) [8] and ARM Memory Partitioning and
Monitoring (MPAM) [3]. Both mechanisms allow the software
to specify each software thread’s expected bandwidth usage

https://github.com/TELOS-syslab/Pivot
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Fig. 1: Normalized 95th percentile latency of the LC tasks
(lower is better). A bar higher than the red line is a violation
of the QoS requirements.
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Fig. 2: Memory bandwidth utilization of different approaches
(higher is better).

ratio. During execution, these mechanisms monitor and
adaptively throttle the bandwidth usage of each thread.

The key difference between Intel MBA and ARM MPAM
is their approach to throttling memory bandwidth usage. Intel
MBA enforces memory bandwidth limits by introducing a con-
troller between the L2 cache and the Last-Level Cache (LLC).
If a software thread overuses memory bandwidth, the con-
troller inserts additional delays into its memory accesses. In
contrast, ARM MPAM enforces memory bandwidth usage by
modifying the memory bandwidth controller module between
the memory bus and the memory controller. MPAM assigns
each software thread a priority value based on how much
the thread under- or overutilizes the expected bandwidth. If
memory access requests from different threads are queued at
the memory bandwidth controller module, MPAM prioritizes
scheduling those issued by threads with higher priority.

Unfortunately, both memory bandwidth partitioning mecha-
nisms suffer from significant limitations. To demonstrate this,
we used an iBench application [20] with seven threads as a
memory-intensive BE task. Each thread in iBench sequentially
copies the content from one private 64MB buffer to another.
For MBA, we set the expected memory bandwidth of the LC
task to minimal values that meet the QoS requirements. For
MPAM, we set the expected memory bandwidth usage of the
LC task to be 100% of the overall bandwidth. Additionally,
for both mechanisms, we partitioned the LLC to reserve
the maximum possible space for the LC task, preventing
contention in the LLC from affecting its performance. We
used five different LC tasks. Following prior work [17], we
set the QoS requirement by identifying the knee of the load-
latency curve and drove the LC task with 70% of the maximal
load (See Figure 12). We conducted the experiments with
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Fig. 3: Max normalized throughput of iBench (with respect to
the throughput of 7-thread iBench running alone) when there
is no QoS violation for LC tasks (higher is better).

Gem5 [11]. Section V details our experimental setup and
results with other BE tasks.

Figure 1 shows that, even with 100% expected bandwidth
usage, MPAM fails to enforce the QoS requirements for the
LC task. This is because, as explained in §III-A, enforcing
memory access priorities merely at the memory bandwidth
controller is insufficient. While MBA successfully enforces the
QoS requirements, it is overly conservative and significantly
underutilizes memory bandwidth, using only 38.9% to 70.3%,
as shown in Figure 2. As shown in Figure 3, such low
bandwidth utilization reduces the throughput of BE tasks,
defeating the purpose of minimizing operational costs through
task co-location. In contrast, PIVOT successfully enforces QoS
requirements and achieves the highest bandwidth usage and
throughput for all workloads, as shown in the figures.

III. DESIGN INSIGHTS BEHIND PIVOT

This section presents our two key insights that enable
PIVOT to overcome the limitations of existing approaches (i.e.,
inability to enforce QoS requirements and underutilization of
memory bandwidth, as discussed in §II-B).

The starting point of PIVOT’S design is MPAM, since we
believe that prioritizing memory access requests, as done by
MPAM, is fundamentally better at utilizing memory bandwidth
than delaying memory access requests, as done by MBA.

A. Enforcing Access Priority on Full Memory Path

To effectively enforce QoS requirements under bandwidth
contention, our key insight is that memory access priority
must be enforced across all components on the memory
path. This is because, as shown in Figure 4, the root cause
of QoS violations is that memory access requests issued
by BE tasks block those issued by LC tasks in multiple
shared memory system components (MSCs), including the L2
cache interconnect, coherent memory bus, memory bandwidth
control module, and memory controller. MPAM schedules
memory requests only at the memory bandwidth controller.
This is insufficient because, under bandwidth contention, the
queuing in the memory bandwidth controller propagates to up-
stream MSCs, eventually causing queuing in all shared MSCs.
Therefore, the queues in multiple MSCs should be viewed as
a single virtual queue, and thus memory requests issued by
LC tasks should be prioritized across all these queues.
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scheduling memory access requests at a single component, as
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Fig. 5: A split of execution cycles of critical loads in Masstree,
an LC task, on different memory system components. Run
Alone: Masstree runs on its own. Co-location: Mastree runs
together with a BE task. Full path: Mastree runs together with
a BE task when full-path prioritization is enabled.

Figure 5 and Figure 6 evaluates the effectiveness of our
insight using same setup as in Section II-B. As shown in
Figure 5, with full path prioritization, the critical loads signif-
icantly reduce their waiting time in each component, almost
matching the Run Alone case. Hence, after enforcing memory
access priority across the full memory path, all LC tasks meet
their QoS requirements even with 9 BE threads. Additionally,
the tail latency increases slowly with the increasing number
of threads, with a maximum increase of 22.3% (14.2% on
average) from 1 to 9 BE threads. Finally, as shown in Figure 7,
QoS violations always occur even if only one of the MSCs
does not enforce access priority.
Insight #1. To meet QoS requirements, memory access
priority must be enforced across all components on the
memory path.

B. Enforcing Memory Access Priority at Instruction-Level

In addition to meeting the QoS requirements, PIVOT must
maximize bandwidth utilization. To demonstrate the challenge
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Fig. 6: Normalized 95th% latency of the LC tasks (with
respect to QoS requirements) with varying numbers of BE task
threads, achieved by enforcing access request priority across
the full memory path (lower is better).
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Fig. 7: Normalized 95th percentile latency of the LC tasks
when a component does not enforce memory access prior-
ity (lower is better). A bar higher than the red line is a violation
of the QoS requirements.

behind this, we enhance MPAM by enforcing the access prior-
ity on full memory path (Referred to as Full Path afterward).
However, as shown in Figure 2, while Full Path performs better
than MBA, it remains too conservative, utilizing only 59.8% to
79.2% of the overall memory bandwidth. This low utilization
rate occurs because prioritizing LC memory accesses often
conflicts with each component’s default scheduling algorithm,
aiming to maximize memory bandwidth utilization. For
example, without the need to enforce memory access priority,
the memory controller can prioritize scheduling requests that
hit the row buffer, thereby increasing bandwidth utilization.
As a result, the more memory accesses that are prioritized,
the lower the memory bandwidth usage.

To resolve the tension between memory bandwidth utiliza-
tion and enforcing QoS requirements, exploiting the fact that
modern servers perform out-of-order execution, our second
key insight is that only the scheduling of performance-
critical memory accesses instructions, specifically the load
instructions causing a long stall on re-order buffer (ROB),
should be prioritized. Prioritizing such a selective portion
of instructions is most cost-effective in minimizing response
latency for LC tasks for the following two reasons. First, a long
stall indicates that the load instruction misses CPU caches and
accesses the main memory, demanding prioritized scheduling
in the memory path. Second, and more importantly, a long
stall implies that this load instruction does not depend on other
instructions (since the out-of-order execution does not hide the
long stall), but rather, other instructions are likely to depend on
it. As a result, prioritizing the scheduling of such instructions
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Fig. 8: Cumulative distribution of load instructions and re-
order buffer (ROB) stall cycles for Silo and Moses.

of LC not only enables them but all the dependent instructions
to retire faster, thereby effectively minimizing latency. As an
example, consider a key-value store such as Redis [2], the
load instruction that obtains the address of the value is one
such critical instruction; once this load instruction returns,
subsequent dependent instructions, such as those that obtain
the value from the address, can also retire.

The above insight immediately frees PIVOT from scheduling
all store instructions. This is because modern servers use write
buffers to optimize store performance. As a result, store in-
structions rarely cause stalls, and, for subsequent instructions,
the processor is often able to find the dependent value in the
write buffer. Therefore, enforcing access priority on store in-
structions provides little benefit for meeting QoS requirements.

In addition, as demonstrated in Figure 8, we found that the
performance-critical loads constitute a very small portion of
the overall loads. We omitted the results for other LC tasks
since they are similar. The figure shows that fewer than 10% of
the load instructions cause over 95% of the reorder buffer stall
cycles. Thus, prioritizing the scheduling of these performance-
critical instructions is unlikely to reduce bandwidth utilization
significantly.
Insight #2. Prioritizing the scheduling of performance-
critical load instructions effectively resolves the tension
between enforcing QoS requirements and maximizing
bandwidth utilization.

IV. PIVOT DESIGN

This section presents PIVOT, a novel, lightweight, and
general solution for memory bandwidth contention based on
the two key insights presented in §III. The novelty of PIVOT
comes from the following aspects. First, based on Insight #1,
PIVOT departs from prior approaches by scheduling memory
accesses across all MSCs. Second, based on Insight #2, unlike
prior approaches that associate access priority to each thread,
PIVOT associates access priority to each instruction, thereby
enabling scheduling at a much finer granularity.

We first provide an overview of PIVOT (§IV-A), followed
by the design of each individual component (§IV-B, §IV-C,
§IV-D), and conclude by discussing PIVOT’S hardware imple-
mentation and the associated cost (§IV-E).
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Fig. 9: Overview of PIVOT.

A. Design Overview

Deployment scenario. PIVOT targets warehouse-scale data
centers, where each workload can be classified into BE and
LC tasks, and the QoS requirements of LC tasks can be clearly
specified. Moreover, the data center environment is suitable for
offline profiling and binary rewriting, as demonstrated by the
recent success of feedback-driven optimization [9], [14], [38],
[39], [43] and post-link optimization [34], [35], [42], [53],
[54] in data center. As detailed later, PIVOT similarly leverages
these techniques to overcome a key design challenge.
Design goals and the key challenge. The overarching goal
of PIVOT is to minimize data center operational costs by
resolving the tension between enforcing QoS requirements
and maximizing bandwidth utilization. In addition, we design
PIVOT to meet the following goals. First, PIVOT aims to be
general; its design relies solely on a few commonly available
hardware features (e.g., performance monitoring counters,
ROB), enabling practical and wide deployment. Second and
more importantly, PIVOT is lightweight, incurring minimal
performance and storage overhead to align with its overarching
goal of minimizing operational costs.

The key design challenge in PIVOT is accurately identifying
the performance-critical loads (§III-B). A naive approach is to
collect the ROB stall cycles of all load instructions, but this
incurs prohibitive performance overhead. We also consider
an alternative design in which PIVOT identifies performance-
critical loads by randomly sampling load instructions. How-
ever, given the small portion of performance-critical loads, this
low-accuracy approach is highly unlikely to work well.
Key components and their workflow. Figure 9 illustrates the
three main components and workflow of PIVOT. To overcome
the challenge mentioned above, PIVOT employs a two-phase
profiling approach.

The first phase is offline (i.e., not in a production environ-
ment), only needs to be performed once for each LC task and
is used to exclude loads in the LC task that are highly unlikely
to be critical under most scenarios (e.g., a load accessing
a memory address accessed only a few instructions earlier).
Specifically, in this phase, PIVOT runs the LC task with a
stress BE workload that consumes lots of LLC sizes and
memory bandwidth. This BE workload can be the same for all



the LC tasks; our evaluation uses a simple memory copying
workload for all the LC tasks, as detailed in §V-B. With this,
PIVOT identifies a set of potential performance-critical loads
in the LC task by recording, among other information, the
ROB stall cycles of all loads. We estimate that this phase
incurs a performance overhead of 75×, making the profiling
time around 30 minutes for each LC task. This profiling time
is acceptable since this is a one-time task and is still much
smaller than the time for data centers to release new tasks,
which on average takes at least several days [38], [53].

The second phase is online (i.e., in the production environ-
ment) and identifies the actual performance-critical loads in the
LC task based on real user requests and co-located BE tasks.
This phase incurs minimal performance overhead, as PIVOT
only collects the ROB stall cycles for loads within the potential
set of that LC task. Subsequently, PIVOT prioritizes the
scheduling of these actual performance-critical loads across
all shared MSCs.

B. Offline Profiling

Design. Figure 10 presents the offline profiling mechanism
in PIVOT. PIVOT takes as input the binary of the target LC
task, a user-specified stress BE task, and a few user-provided
parameters that specify the criteria for determining whether
a load is performance-critical in the LC task. The offline
profiler outputs a rewritten binary of the LC task that flags
potential performance-critical loads. This is possible since
PIVOT introduces an extra bit in the instruction format to
record the criticality of the loads.

The offline profiling works by first running the LC and the
stress BE tasks on the same physical node and collecting
runtime information of the LC task (Step ➊). Specifically,
the profiler collects, for each load in the LC task, the
LLC miss rate, the ROB stall cycles, and the number of
executions. The profiler achieves this by utilizing hardware
performance monitoring units [4], [65] and instruction tracing
supports [5], [40]. Specifically, before each load, the profiler
starts the performance counters for ROB stall cycles i.e.,
topdown be bound.reorder buffer in Intel machines, rob stall
in ARM servers, and upon completion of the load, it records
the value in memory.

Subsequently, in Step ➋, PIVOT decides whether a load
is potentially performance-critical using three user-provided
parameters: (a) the minimal execution frequency (i.e., the
number of executions relative to all loads), with a default
of 0.5%; (b) the minimal LLC miss rate, with a default of
10%, and (c) the minimum threshold for ranking in the top
percentage of ROB stall cycles, with a of 5%. These default
values are empirically set to maximize the chance of including
actual performance-critical loads. PIVOT flags all loads that
fall below the minimal execution frequency as normal loads
since such low frequency makes them insignificant to the
performance of the LC task. Next, PIVOT flags all loads as
potentially critical if their LLC miss ratio exceeds the minimal
threshold or if they rank higher in ROB stall cycles than the
minimal ranking. Finally, in Step ➌, PIVOT marks the potential
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Fig. 10: The offline profiling in PIVOT.

critical load instructions by rewriting the binary to set the extra
bit for each such instruction.
Discussion. We measured the overhead of offline profiling,
which is around 75× (Figures omitted due to space limita-
tions). Most of the overhead is due to starting and stopping
PMU counters to collect ROB stall cycles (Step ➊), which, on
average, take around 1200 cycles. Following prior work [21],
[22], PIVOT profiles each LC task with a 20-second workload,
which means the offline profiling phase of PIVOT is around
30 minutes. The length of the profiling time is acceptable, as
discussed earlier §I. In addition, since the goal is to exclude
loads that are highly unlikely to be critical, its effectiveness
is not sensitive to the user-specified parameters, as shown in
§VI-C.

C. Identifying Real Performance Critical Loads Online

At a high level, the online validation mechanism works as
follows. For each potentially performance-critical load, PIVOT
measures its ROB cycles. If a load instruction causes long
ROB stalls (i.e., exceeding the access time of the LLC) for
more than a specified number of times, PIVOT flags it as
actual performance-critical. This threshold is determined by
the current bandwidth usage of LC tasks. If the bandwidth
usage is lower than the user-specified expected bandwidth,
PIVOT sets a low threshold to include more instructions from
the potential set aggressively. This thus helps PIVOT prioritize
scheduling more loads and utilize additional memory band-
width to meet QoS requirements. Otherwise, if the bandwidth
usage is higher, PIVOT sets a higher threshold.

Figure 11 shows the online validation mechanisms of
PIVOT. PIVOT introduces a new data structure called the
Rutime ROB Block Predictor (RRBP) table, which tracks the
number of times a load instruction causes long ROB stalls.
The RRBP table is directly mapped, and load instructions are
indexed by their addresses. To minimize the storage overhead,
the RRBP table does not store tags. As a result, if two
load instructions map to the same entry, they share the same
counter. However, this potential inaccuracy is acceptable be-
cause performance-critical loads are infrequent, making such
conflicts rare. Since LC tasks might operate in different phases
with varying performance characteristics, PIVOT clears the
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RRBP table every 1M cycles (See §VI-C for evaluation on
more refreshing intervals).

To flag the real performance-critical loads, whenever a
load enters the load queue, PIVOT reads from the RRBP
table and compares the number of long ROB stalls to the
abovementioned threshold. PIVOT tags critical access requests
by introducing a critical bit in the memory access requests.
Since modern architectures can issue multiple loads in a single
cycle, the RRBP table is designed with multiple read ports.

PIVOT counts the ROB stall cycles as follows. When a
load arrives at the head of the ROB, PIVOT first checks if
the instruction is potentially performance-critical by inspecting
the critical bit in its instruction format. If so, PIVOT saves its
sequence number into a private register and starts the block
cycle counter. Then, in each cycle, PIVOT compares the
current sequence number of the load with the saved one. If
they match, PIVOT increments the cycle counter. If they do
not match, the load instruction has been retired, and PIVOT
then checks if this is a long stall. If it is, PIVOT increments
the counter of the relevant entry in the RRBP table.

D. Prioritizing Scheduling Performance-Critical Loads

PIVOT prioritizes the scheduling of performance-critical
loads by introducing a priority queue for each MSC. The
priority queue only holds the memory access requests from
performance-critical loads, while normal memory access re-
quests still go into the ordinary queue. Each MSC prioritizes
scheduling the requests in the priority queue whenever pos-
sible, thereby preventing normal memory access instructions
from blocking performance-critical loads. Compared to an
alternative design where each MSC queues the performance-
critical loads as usual and re-orders them, the priority queue
has the key advantage of preventing blocks due to a lack of
space in the queue.

Another key design consideration in PIVOT is to prevent the
starvation of BE tasks. PIVOT addresses this by implementing
a maximum waiting cycle (8,000 DRAM cycles for memory
controllers and 100,000 cycles for others) for normal memory

access requests. If a request exceeds this wait time, PIVOT
reorders it to the head of the queue.

Finally, to manage scenarios where multiple LC tasks are
co-located on the same physical node , within the normal or
priority queues, PIVOT utilizes MPAM (§II-A and §IV-E)) to
schedule memory accesses based on both current and expected
bandwidth usage. The effectiveness of this approach in co-
location scenarios is evaluated in Section §VI-A2 and §VI-A3.

E. Hardware implementation

We implemented PIVOT on Gem5 [11] with 6,183 lines
of code. To prevent task interference due to contention for
LLC, PIVOT reuses the existing mechanisms to partition the
LLC [3], [50].
Performance and storage overhead. In terms of performance
overhead, accessing the RRBP table costs only a few cycles,
comparable to an L1 cache access.

In terms of storage overhead, as discussed in §IV-C, PIVOT
adds the following components to each PE: an 8-bit register
for saving the sequence number, a 5-bit register for storing the
index for the RRBP table, and an 8-bit comparator (for a 192-
entry ROB), totaling 8 + 5 + 8 = 21bits In addition, PIVOT
adds an extra bit to each entry in the ROB to flag potential
criticality, resulting in a total of 192bits(192entries× 1bit).
The RRBP table consists of 64 entries, each with 6 bits to
store the number of long stalls, leading to 64× 6 = 384bits.
Furthermore, PIVOT adds to each entry in the load queue
(consisting of 64 entries) 1 bit to flag the actual criticality bit,
and 6 bits to store the program counter (PC) index, totaling
64×7 = 448bits. In summary, the total extra storage for each
PE is 21 + 192 + 384 + 448 = 1045bits.
MPAM implementation. We could not find an existing
MPAM implementation in Gem5, so we developed one based
on the MPAM standard [3]. Our implementation modifies
the memory bandwidth control module to introduce three
priority classes: high (if the thread consumes more than the
allowed maximal bandwidth), medium, and low (if the thread
consumes less than the allowed minimal bandwidth). The
monitoring window for bandwidth usage is 100,000 cycles,
following Kunpeng 920 [66].

V. EXPERIMENTAL METHODOLOGY

This section describes the simulation infrastructure, machine
model, and benchmarks used to evaluate PIVOT.

A. System Architecture Overview

Table II and Table III show the parameters of the target
CPUs simulated in Gem5. Since many modern ARM servers
now support the MPAM specification, such as NVIDIA Grace
[25], ARM Neoverse [57], Marvell Thunder [61], and Huawei
Kunpeng [66], we select Huawei Kunpeng and ARM Neoverse
as the models to match our simulator parameters. The evalua-
tion results in section VI-A, section VI-B, and section VI-C are
based on the parameters in Table II. Additionally, Section VI-D
shows the effect of Pivot on ARM Neoverse cores using
parameters in Table III
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Fig. 12: Tail latency with increasing input load on the Gem5 simulator. Horizontal lines show the knee of the curve, which
defines QoS. Vertical lines show max load (maximum RPS under QoS).

Since the simulation time of the Gem5 simulator is pro-
portional to the number of simulated processors, we simulate
up to 8 cores running the data center applications to control
the time consumed by the simulation (about 2-10 days per
simulation). In the experiment, PARTIDs (an identifier to flag
different threads for resource allocation) are assigned based on
CPU serial numbers, ensuring that each CPUID corresponds
to a unique PARTID. Each CPU executes a single thread.

B. Applications
Table I shows our workload from Tailbench [37], Cloud-

Suite [1], and iBench [20]. Our stress BE task is a memory-
intensive 7-thread program, where each thread sequentially
copies the content from one private 64MB buffer to another
buffer. We run an application for 20 seconds of simulated time,
including 10 seconds of simulation of the warm-up process
using KVM acceleration and 10 seconds of detailed simulation
using the ARM O3CPU (about 20 billion cycles).

TABLE I: LC and BE Workloads

Latency-Critical (LC) Workloads
Img-DNN (ID) Image recognition
Moses (MS) Real-Time translation
Xapian (XP) Online search
Silo (SL) In-memory transaction database
Masstree (MT) Key-value store

Best-Effort (BE) Workloads
Data Analytics (DA) Bayes classification on a Wikimedia

dataset
Graph Analytics (GA) PageRank on a Twitter dataset
In-memory Analytics
(IA)

Collaborative filtering on user-movie rat-
ings

iBench Massive streaming read and write

Fig. 12 reveals LC tasks’ 95th percentile latency when
running alone, with increasing request per second (RPS) on
the simulator. We measured the baseline on a 4-core cluster
with 8MB LLC. The QoS target is configured as the knee of
the curve [17], marked with horizontal dashed lines. We define
max load of an LC task as the maximum RPS under the QoS
target.

VI. EVALUATION

A. Effect of PIVOT

The comparison between PIVOT and pure hardware ap-
proaches (i.e., MBA and MPAM) has been made in Sections II

TABLE II: Kunpeng-like Gem5 Configurations

Parameters Value
ISA Aarch64 (64-bit ARM)
Private L1I,L1D Caches 64kB, 4-way, 64B line size, 2 cycle hit,

LRU, 4 mshrs
Private L2 Caches 512kB, 8-way, 64B line size, 12 cycle hit,

LRU, 20 mshrs
Shared L3 Cache 2MB per CPU core, 16-way,64B line

size, 32 cycle hit, LRU, 40 mshrs
Fetch/Decode/Issue/Commit 8 wide
ROB Entries 192
Issue/Load/Store Queue 64/32/32
Main Memory 1 channel, 16GB: DDR4-2400 x64,

8x8 Micron MT40A1G8
OS Linux-5.10.137

TABLE III: ARM Neoverse-like Gem5 Configurations

Parameters Value
ISA Aarch64 (64-bit ARM)
Private L1I,L1D Caches 64kB, 4-way, 64B line size, 2 cycle hit,

LRU, 16 mshrs
Private L2 Caches 512kB, 8-way, 64B line size, 8 cycle hit,

LRU, 32 mshrs
Shared L3 Cache 2MB per CPU core, 16-way,64B line

size, 10 cycle hit, LRU, 128 mshrs
Issue 14 wide
Fetch/Decode/Commit 8 wide
ROB Entries 316
Issue/Load/Store Queue 64/76/58
Main Memory 1 channel, 16GB: DDR4-2400 x64,

8x8 Micron MT40A1G8
OS Linux-5.10.137

and III. This section compares PIVOT against state-of-the-art
work based on hardware-software co-design to demonstrate
that, due to the limitations in the underlying hardware de-
sign (§II-B), even the co-design approach is insufficient. We
compare Pivot with the following baselines: Default, which
represents free contention for everything; PARTIES [17] and
CLITE, that both utilizes Intel CAT [50] and MBA [8].

Due to the abundance of potential application mixes, we
select a few representative scenarios. We tested three co-
location scenarios: co-location of 1 LC task and BE tasks,
co-location of multiple LC tasks and BE tasks, and co-location
of multiple LC tasks.

1) Co-location of 1 LC task and BE tasks: We configure
the load of 5 diverse LC tasks to 10%, 30%, 50%, 70%, and
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Fig. 14: The 95th percentile tail Latency of LC tasks in 1 LC and BE tasks co-locating scenarios.

90% of the max load, and adjust the number of threads for the
BE task (iBench) from 0 to 7 at each specified load level on a
cluster. Then, we evaluate the throughput of the BE task when
the LC task meets QoS. The baseline (100%) throughput for
the BE task is defined as the total IPC achieved by a 7-thread
BE task executing independently in the simulator.

Fig. 13 illustrates the performance of this scenario. PIVOT
outperforms all three policies as shown in Fig. 13. Concerning
effective machine utilization (EMU) [45], which reflects the to-
tal load of all co-located tasks under QoS, Default, PARTIES,
CLITE, and PIVOT achieve average 86.1%, 116.0%, 116.3%,
and 133.2% EMU, respectively. Moreover, PIVOT achieves up
to 2.06× higher BE throughput than thread-centric methods.

2) Co-location of 2 LC tasks and BE tasks: In this section,
we utilize several representative 2 LC tasks co-located with
BE scenarios to illustrate the effect of PIVOT.

Firstly, we present the result of the 2 LC apps co-located
with iBench scenarios. We adjust the load of 2 LC tasks and
the number of threads for the BE task (from 0 to 6). Then,
we evaluate the throughput of BE tasks when 2 LC tasks
meet QoS. The baseline (100%) is defined as the throughput
achieved by a 6-thread BE task running independently.

Fig. 15 shows the effect of PIVOT. Unlike thread-centric
resource managers, PIVOT can manage shared resources with-
out introducing additional latency and extracting resources
from non-critical load instructions. In co-location of Xapian
and Img-DNN (Fig. 15d), PIVOT achieves on average 67.9%,
20.3%, and 15.7% higher EMU than Default, PARTIES and
CLITE, respectively. In co-location of Moses and Img-DNN
(Fig. 15h), PIVOT achieves on average 67.9%, 20.3%, and
15.7% higher EMU than Default, PARTIES and CLITE, re-
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Fig. 15: Colocation of Xapian, Img-DNN, iBench and colo-
cation of Moses, Img-DNN, iBench. Each cell represents the
max throughput of BE tasks (higher is better) when LC tasks
run at a given RPS, and both applications meet QoS.

spectively. Furthermore, Pivot enhances the BE task’s through-
put by up to 2.76× compared to CLITE.

To show the effect of Pivot in real-world applications, We
present six co-location scenarios, including a single BE task
and 2 BE tasks running with LC tasks.

Fig. 16 presents the single BE task’s throughput when co-
locating with 3 specific scenarios. Pivot acquire throughput
improvement varying from 1.24× to 1.98× compared to
CLITE. Fig. 17 presents the 2 BE applications co-location
results. Pivot acquire throughput improvement varying from
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Fig. 17: Co-location of 2 LC and 2 BE tasks from CloudSuite.
The Y-axis is the normalized throughput of the 2 BE tasks
compared to running alone and average memory bandwidth
when co-locating with different LC tasks (higher is better).

1.29× to 1.90× compared to CLITE. Since Default can not
meet the QoS requirement, We do not present its result.

3) Co-location of Multiple LC tasks: We select 5 repre-
sentative 2-app co-location scenarios and a 3-app co-location
scenario on a cluster to demonstrate that PIVOT can also
reduce memory source contention among LC tasks.

Given the diverse memory resource preferences among ap-
plications, the scenarios are determined by the complementary
or similar preferences of the 2 tasks. In 2-app co-location
scenarios, We configure the RPS of one LC task to 10%,
30%, 50%, 70%, and 90% of the max load, and sweep the

load of another LC task from 5% to 100% of its respective
max load, in 5% load increments. All load combinations that
satisfy QoS requirements with each resource manager are
documented. Fig. 18 presents the performance of 5 2-app co-
located scenarios.

Default, which does not implement resource isolation, per-
forms significantly worse than other resource managers. Com-
pared to PARTIES, CLITE outperforms by simultaneously
tweaking multiple resources to achieve the optimal configu-
ration in some cases.

PIVOT assigns priority to control memory bandwidth with-
out introducing additional latency. As depicted in Fig. 18e,
Img-DNN and Moses are memory bandwidth-sensitive ap-
plications, PIVOT enhances the parallelizability of these ap-
plications by prioritizing critical load. Consequently, PIVOT
achieves an average of 43.0%, 17.2%, and 12.1% higher EMU
than Default, PARTIES, and CLITE in the experiment.

To show a more complicated case, We present the 3 LC
tasks co-location result in Fig. 19. We test the four methods
when Img-DNN is at low load and high load. PIVOT achieves
up to 19.0% higher EMU than CLITE.

B. Evaluation of Load Criticality Prediction Method

This section discusses the effects of several load-criticality
prediction methods to address memory bandwidth contention.

CBP [29] is a load criticality predictor near the ROB that
guides the memory controller scheduling based on the ROB
stall cycles. We use the BlockCount CBP to rank load requests
on the memory controller. Since other MSCs, in addition to
the memory controller, need to enforce priority, we also assess
the performance of using the Binary-CBP prediction method
to flag load without profiling (CBP + full path).

Fig. 20 illustrates the performance of four critical load
prediction methods. CBP focuses on optimizing memory con-
troller scheduling. Due to the absence of other MSCs isolation,
LC tasks can only co-locate with fewer BE tasks’ threads
BE tasks to meet the QoS requirement. Although utilizing
Binary-CBP to predict load criticality performs better, some
memory access delays from some load instructions that cause
ROB blocking are tolerable. Additionally, lacking profiling
also leads to more misprediction due to the limited table.

Therefore, CBP, Full Path + CBP, achieve on average
39.0% and 12.0% EMU lower than PIVOT, respectively.

C. Sensitivity Analysis

We use the five scenarios where one LC task at 70% of its
max load co-located with the BE task (iBench) as a training
set to conduct sensitivity analysis.

We evaluate four RRBP table sizes (16, 32, 64, and 128
entries) and compare them against a fully associative table fea-
turing unlimited entries, which enables unaliased prediction,
to explore the configuration of RRBP Table Size. As shown
in Fig. 22, the RRBP table with 16 entries and 32 entries
experiences up to 6.9% and 1.0% performance degradation
by aliasing, respectively. Transitioning from an unlimited
number of entries to a 64-entry predictor results in almost no
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Fig. 18: Co-location of 2 LC tasks. The Y-axis is the maximum RPS (as a percentage of max load) of the second LC task
(higher is better) when the first LC task is at a given RPS (x-axis) and both tasks meet QoS.
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performance drop. This results from profiling filtering out a
subset of loads from the thousands of instructions. Moreover,
almost no more than 64 of these loads from the LC tasks
simultaneously reside in the RRBP Table.

We explore three interval lengths for the RRBP table refresh
(500K, 1M, and 2M cycles). Compared to 500K and 2M
refresh cycles, an RRBP table with a 1M cycle refresh period
increases EMUs by averages of 0.5% and 1.3%, respectively.

We evaluated the configuration of LLC miss rates and the
ROB stall rankings for offline profiling. When the configura-
tion of miss rates was configured at 5% and 15%, the average
EMU decreased by 0.9% and increased by 0.1%, respectively,
compared to the current configuration in Section IV-B. When
the configuration of stall ranking was configured at 10% and
15%, the EMU decreased by 0.6% and 1.8%, respectively.

D. The Effect of PIVOT on the ARM Neoverse CPU

This section evaluates the performance of PIVOT on the
ARM Neoverse-like CPU model in Table III to more com-
prehensively validate our approach’s effectiveness on modern
server-class CPUs.

We compared PIVOT and CLITE using the same aforemen-
tined experimental setup as in Fig. 13, Fig. 16, and Fig. 17.

Fig. 23 illustrates the performance of the scenarios where
1 LC and BE tasks are co-locating. PIVOT also outperforms

CLITE in this model and achieves up to 2.11× higher BE
throughput than CLITE.

To show the effect of PIVOT in real-world applications
on the ARM Neoverse CPUs, We present the six same co-
location scenarios. Fig. 24 presents the single BE task’s
throughput when co-locating with 3 specific scenarios. PIVOT
acquire throughput improvement varying from 1.22× to 2.01×
compared to CLITE. Fig. 25 presents the 2 BE applications
co-location results. PIVOT acquire throughput improvement
varying from 1.30× to 1.80× compared to CLITE.

VII. LIMITATION OF PIVOT AND FUTURE WORK

PIVOT have two potential limitations. Firstly, since PIVOT
prioritizes scheduling critical loads and tolerates the latency
of non-critical loads, PIVOT only achieves weak isolation.
In contrast, MBA reduces the request rate of interfering
tasks through additional latency, resulting in stronger isolation.
Weak isolation harvests resources in the data center, but the
irregular distribution of critical loads may cause PIVOT to
slightly increase the average latency of LC tasks in some co-
location scenarios. Strong isolation effectively enhances the
average performance, even though it leads to resource under-
utilization. Therefore, when LC tasks require lower average
latency, future work should consider how to trade off the use
of PIVOT and the strong isolation to meet the demands of
actual scenarios.

Additionally, PIVOT needs offline profiling to filter loads.
Hence, PIVOT cannot handle unknown LC tasks in multi-
tenancy applications. Fortunatelly, the smaller instruction foot-
prints in microservices and serverless scenarios provide an
opportunity for PIVOT’S future work to apply in clouds.

VIII. RELATED WORK

The most relevant related work (e.g., MBA and MPAM)
has been compared across the paper. This section presents the
other related work.

A. Task Scheduling and Resource Management Mechanisms
in the Data Centers

To improve resource utilization in data centers, earlier
work [12], [21]–[23], [32], [47], [48] analyzes job resource
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sensitivities through offline profiling and collocates only those
jobs that do not compete for the same resources to ensure
QoS. Recent studies employ resource partition mechanisms.
Some prior studies have explored partitioning a specific shared
resource (e.g., LLC, memory bandwidth) in a data center
environment. KPart [24], Vantage [58], SWAP [64], AET [31]
and DCAPS [67] concentrate on optimizing cache partition
techniques to mitigate resource contention within caches. MBP
[33], MCP [49], ABP [68], and Hypart [55] explore mem-
ory bandwidth partition methods from various perspectives.
Shenango [52] and Caladan [28] aim to achieve microsecond-
scale resource partitioning, focusing solely on partitioning
CPU cores. Stretch [46] explores the ROB partitioning method.

However, these studies extensively examine the partitioning
of one-dimensional resources but lack research on resource
partitioning in other dimensions.

A significant portion of research is dedicated to multi-
resource partitioning strategies in data centers. Specifically,
some studies [15], [36], [45], [69]–[71] address scenarios
where a single LC job is combined with multiple BE jobs.
While these studies primarily target meeting the QoS demands
of LC jobs, they overlook enhancing the execution efficiency
of BE jobs. For instance, Heracles [45] is designed to meet the
QoS requirements of a single LC job without implementing
resource partitions for BE jobs, allowing them to run unman-
aged. Therefore, Some work [16], [17], [44], [56] focus on co-
locating multiple jobs using multi-resource partitioning. Pivot
offers instruction-centric resource partitioning, enhancing data
center resource utilization.

B. Critical Load Prediction

This section explains why the existing techniques on pre-
dicting and prioritizing loads are unsuitable for problem
domain PIVOT targets (i.e., bandwidth partitioning in data
centers). At a high level, with PIVOT, the critical loads for
bandwidth partitioning cause a long stall on the reordering
buffer. However, existing techniques are designed for different
problem domains and thus are not ineffective in identifying
such critical loads.

Das et al. [19] enhance application-level throughput by
prioritizing packets belonging to stall-time critical applications
over others in the network-on-chip. This work does not involve
predicting load criticality and thus is orthogonal to PIVOT; The
two techniques can be integrated for better effects.

CLPT [60] utilizes the count of direct consumers to assess
the criticality of a load instruction. However, the count of
consumers is not an appropriate metric in bandwidth partition-
ing. This is because the criticality of the load in bandwidth
partitioning (i.e., a load that causes a long stall in ROB) is not
directly correlated with the number of consumers.

CATCH [51] targets optimizing cache prefetch and uses a
construction of the data dependency graph (DDG) [27] to
tag critical load on the costliest execution path. Similarly
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compared to running alone and average memory bandwidth
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to the discussion above, this metric is not well-suited for
the bandwidth partitioning scenario since it is not directly
correlated with a load that causes a long stall in ROB. CATCH
also introduced complex hardware overhead.

CRISP [43] is a technique that predicts loads that frequently
cause LLC misses and with low memory parallelism (MLP) as
critical. CRISP is proposed to prefetch load slices and optimize
the IPC of applications. Hence, CRISP does not distinguish
criticality in memory access loads.

CBP [29] marks a load when it stalls the ROB in runtime
without any profiling. The larger instruction footprint in the
data center would limit the prediction accuracy of CBP. This

is because more load instructions are hashed into the same
table entry, resulting in CBP prediction failure.

Hermes [10] conceals the cache access time of long-latency
load instructions via off-chip load prediction. However, Her-
mes does not distinguish the off-chip load, even if some do not
affect performance and can be hidden in the OOO execution.

Some other research delves into investigating instruction
criticality to enhance energy efficiency [7], [13], [41], [59].
However, these methods do not optimize the application’s
performance and do not apply to scenarios where QoS must
be strictly guaranteed.

IX. CONCLUSION

This paper presents PIVOT, a lightweight and general mem-
ory bandwidth partitioning mechanism that effectively resolves
the inherent tension between enforcing the QoS requirements
for LC tasks and maximizing bandwidth utilization, and
thereby simultaneously achieving both of them. The effective-
ness of PIVOT comes from two key novel design insights that
significantly depart from prior approaches. First, the priority of
memory accesses issued by LC tasks should be enforced across
all the components on the memory path. Second, with out-of-
order execution, it is sufficient to prioritize only the scheduling
of a selective portion of performance-critical loads issued
by LC tasks. PIVOT proposes a novel two-phase profiling
technique that accurately identifies performance-critical loads
in the LC task with minimal performance overhead, aligning
with the data center deployment scenario. The memory access
scheduling mechanism in PIVOT prevents BE tasks from
starvation and considers the scenarios where multiple LC tasks
are co-located on the same physical node. Our extensive evalu-
ation shows that PIVOT improves effective machine utilization
by up to 34.5% while increasing the throughput of the BE
applications by up to 2.76×, without causing QoS violation.
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X. ARTIFACT APPENDIX

A. Abstract

We provide the source code and setup necessary for PIVOT.
PIVOT is a hardware extension that provides instruction-centric
memory bandwidth partitioning for data center applications.

PIVOT prioritizes critical load across the full memory access
path and tolerates non-critical load’s latency. We implemented
ARM MPAM specification in the artifact and instantiated
PIVOT based on MPAM. PIVOT has been implemented using
gem5, a cycle-accurate CPU simulator.

This artifact consists of the simulator’s source code, a
disk image, a Linux bootloader, and a Linux kernel used for
evaluation, as well as scripts needed to replicate the result in
the paper.

B. Artifact check-list (meta-information)
• Algorithm: PIVOT.
• Compilation: GCC 10 or higher.
• Binary: All required binaries are included.
• Run-time environment: The simulator can be run on an ARM

machine. We evaluated our artifact on the Huawei TaiShan 200
(Model 2280) with OpenEuler 21.09.

• Hardware: An ARM machine with more than 16 cores and at
least 100 GB of disk space that supports KVM.

• Execution: Gem5 simulations.
• Metrics: Normalized IPC and 95th percentile latency.
• Experiments: Instructions to prepare evaluation resources, run

the experiments, parse results, and plot graphs are available in
the README file.

• How much disk space required (approximately)?: 100GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 2 hours.
• How much time is needed to complete experiments (approx-

imately)?: About 30 hours on a 64 core system.
• Publicly available?: Yes.
• Archived (provide DOI)?: 10.5281/zenodo.14305038

C. Description

The artifact contains the source code of PIVOT along with
resouces including a linux bootloader, a linux kernel and a
disk images with benchmarks and datasets. This allows for
reproducing the key experiment figure 3 contained in section
§II-B, which comparing PIVOT to the modern bandwidth
partitioning mechanisms Intel MBA and ARM MPAM (the
most relevant related work).

1) How to access: The artifact can be downloaded from
https://github.com/TELOS-syslab/Pivot or https://zenodo.org/
doi/10.5281/zenodo.14305038. The resources for evalua-
tion can be downloaded from https://zenodo.org/doi/10.5281/
zenodo.14275908

2) Hardware dependencies: The artifact requires an ARM
machine with more than 16 cores and at least 100GB of free
disk space that supports KVM. We evaluated our artifact on
the Huawei TaiShan 200 (Model 2280) with OpenEuler 21.09.

To avoid unknown issues caused by hardware inconsisten-
cies, we can grant the reviewers access to our Huawei Taishan
server for artifact evaluation.

3) Software dependencies: Gcc is used for compilation,
Python3 to parse results, and Python3 with matplotlib to
plot graphs. Additionally all the dependencies for Gem5
itself are needed. Detailed instructions on how to build can
be found here: https://www.gem5.org/documentation/general
docs/building.

4) Data sets: The data sets for artifact evaluation is con-
tianed in our preovided resource.

D. Installation

The scons software construction tool is used to compile the
gem5 simulator. We provided a push button scripts to build
workflow and download Pivot’s resource.

git clone https://github.com/TELOS-syslab/Pivot
cd Pivot
./make.sh

E. Experiment workflow

The README provides detailed instructions required to
reproduce the results from the paper. These include:

• First, download Pivot’s resources and compile gem5
simulator on the platform.

• Then, execute the simulations (baseline, PIVOT, Intel
MBA, ARM MPAM).

• Finally, parse the simulation results and plot the figure
for normalized performance.

F. Evaluation and expected results

The expected results from this artifact is to recreate the key
experiment results – Figure 3 (Comparing PIVOT against the
most relevant related work Intel MBA and ARM MPAM).

G. Experiment customization

Scripts to conduct test are provided in the artifact (folder
scripts/*). Although customization is not expected, it can be
done in interest of limited time or resources by changing a
few parameters in the scripts in the artifact.

To run other benchmarks, users can utilized Qemu to modify
the disk images.
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