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Abstract
Existing file systems for persistent memory (PM) exploit its
byte-addressable non-volatile access with low latency and
high bandwidth. However, they do not utilize two unique PM
properties effectively. The first one is contention awareness,
i.e., a small number of threads cannot thoroughly saturate
the PM bandwidth, while many concurrent accesses lead to
significant PM performance degradation. The second one is
NUMA awareness, i.e., exploiting the remote PM efficiently,
as accessing remote PM naively leads to significant perfor-
mance degradation.
We present Odinfs, a NUMA-aware scalable datapath

PM file system that addresses these two challenges using a
novel opportunistic delegation scheme. Under this scheme,
Odinfs decouples the PM accesses from application threads
with the help of background threads that access PM on behalf
of the application. Because of PM access decoupling, Odinfs
automatically parallelizes the access to PM across NUMA
nodes in a controlled and localized manner. Our evaluation
shows that Odinfs outperforms existing PM file systems up
to 32.7× on real-world workloads.

1 Introduction
Persistent memory (PM), a storage-class memory, breaks the
traditional dichotomy of storage and memory. It offers byte
addressability, non-volatility, low latency, and high band-
width [8, 14, 23, 43]. Recent characterization studies show
that PM has many subtle performance characteristics [18–
20, 23, 27, 29, 37, 39, 40, 43], posing a significant challenge
for storage stacks to utilize PM performance efficiently.
Such a challenge arises from two unique PM character-

istics. The first factor is the tension between concurrent
accesses and PM performance. In particular, a small number
of threads underutilize PM bandwidth, while a high num-
ber of concurrent access threads1 lead to PM performance
meltdown [39]. The meltdown happens because a high num-
ber of concurrent access threads render the caching and

1In this paper, we use the term “access thread” to denote a thread that
directly accesses PM. It could be an application thread or a kernel thread.
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Figure 1: Themaximal PM read andwrite bandwidth of four PM file
systems and Odinfs. ext4(RAID0): ext4mounted on a RAID0 built
from PM across all NUMA nodes. Benchmark: fio, in which each
thread accesses a private file at the granularity of 2MB sequentially,
on an eight-socket machine.

prefetching in PM inefficient [14, 43]. The second factor
is the pronounced NUMA impact on PM, as several prior
works found that remote NUMA accesses on PM are much
slower than DRAM, leading to at least 2× bandwidth re-
duction [14, 27, 38]. Supporting multiple NUMA domains is
currently the primary way to increase PM’s capacity and ag-
gregated bandwidth. Unfortunately, the pronounced NUMA
impact defeats the purpose of PM NUMA architecture.

Several proposed PM file systems exploit various charac-
teristics of PM [10, 12, 16, 17, 24, 25, 28, 34, 41]. However,
none of the existing PM file systems considers the tension be-
tween concurrent accesses and PM performance. Moreover,
the conventional approach to mitigate the PM NUMA impact
is to migrate data to CPUs or vice versa [25, 42], which in-
curs a high migration overhead, and cannot efficiently utilize
the aggregated PM bandwidth. Figure 1 illustrates the issues
for several PM file systems [2, 17, 25, 41]. The bandwidth of
these file systems highly depends on the thread counts. Ex-
cept for ext4(RAID0) performing the read workload, the read
and write bandwidth of these file systems collapse after the
thread count exceeds a certain threshold. In summary, exist-
ing PM file systems cannot efficiently utilize PM in a NUMA
setup and incur performance collapse if multiple threads of



the application (e.g., file server software and video streaming
software) access PM concurrently.
This paper presents Odinfs: (Opportunistic DelegatIoN

File System), a NUMA-aware PM file system that maximizes
PM performance by controlling concurrent accesses, mini-
mizing the NUMA impact, and parallelizing PM accesses to
utilize the aggregated bandwidth. To design Odinfs, we first
holistically analyze the behavior of existing PM file systems
on an eight-socket NUMA machine. We analyze two issues
specifically: maintaining maximum PM performance within
a NUMA node and minimizing the PM NUMA impact. For
the first issue, we find that both read and write performance
of PM collapse with high thread counts, while prior work
only reports the write performance collapse [14, 43]. For the
second issue, we provide a detailed analysis and quantita-
tively confirm that placing the access threads in the same
NUMA node as PM minimizes the NUMA impact.

Motivated by our performance analysis, we designOdinfs
with three major design goals: (1) Limit concurrent PM
accesses (access arbitration): Odinfs controls the number
of PM access threads to maintain the maximal PM perfor-
mance within a NUMA node. (2) Localized PM accesses
(NUMA-awareness): Odinfs ensures threads always access
the local PM within a NUMA node, thereby avoiding the PM
NUMA impact. (3) Automatic parallel PM accesses (auto-
matic parallelization): Odinfs automatically parallelizes
applications’ PM access requests across all NUMA nodes
without application modification. Odinfs thus efficiently
utilizes aggregated PM bandwidth, thereby improving appli-
cation performance.

Odinfs achieves these goals by proposing a new
approach—opportunistic delegation—that decouples PM
data accesses from application threads. Specifically, on each
NUMA node, Odinfs creates multiple background kernel
threads (delegation threads) that access PM on behalf of
the application threads. Therefore, Odinfs limits the max-
imum concurrency within PM by controlling the number
of delegation threads. Moreover, the delegation threads are
local to each NUMA node, leading to NUMA-aware local-
ized accesses. Odinfs thus departs from the conventional
NUMA-mitigation approaches in PM file systems that mainly
involve data or thread migration.

Furthermore, the delegation threads enable servicing bulk
data requests by efficiently utilizing aggregated PM band-
width across all NUMA nodes. Specifically, Odinfs first
stripes the file data across PM in all NUMA nodes. Exploit-
ing the well-designed system call interface, Odinfs services
data system calls (e.g., read() and write()) by transparently
dividing them into multiple disjoint access requests based on
the stripe size and sending such access requests to the cor-
responding delegation threads. The delegation threads thus
access PM in different NUMA nodes in parallel to serve the
system call. We further enhance Odinfs with fine-grained
parallelism for data operations. Our evaluation shows that

Odinfs outperforms other file systems by up to 32.7× for
real-world workloads and has up to two orders of magnitude
performance improvement for scalability microbenchmarks.
This paper makes the following contributions:
• Analysis.We thoroughly analyze the behavior of ex-
isting PM file systems on a large NUMA machine and
reveal two new findings.

• Opportunistic delegation.We propose an opportunis-
tic delegation scheme for PM file systems that decou-
ples PM data accesses from application threads, thus
efficiently utilizing both local and remote PM.

• Odinfs We design and implement Odinfs: a PM file
system that builds on the opportunistic delegation
scheme with state-of-the-art concurrency control mech-
anisms.Odinfsmaximizes the performance and further
scales data operations with increasing threads.

2 PM Performance Analysis
Prior study has shown that the underlying architecture of
PM is quite complicated [39], and PM has limited bandwidth
and higher latency compared to DRAM [14, 40]. Moreover,
naively utilizing PM in NUMA machines often underutilizes
PM or leads to performance collapse [14, 25, 27, 38]. To show-
case the issues of concurrent NUMA accesses in PM, we first
provide an overview of the current hardware (§2.1). We then
analyze why existing PM file systems fail to handle many
concurrent requests (§2.2) and the impact of different types
of accesses in a NUMA machine (§2.3).
2.1 Intel Optane internals
The Intel Optane [8] PM is the only publicly available non-
volatile memory technology so far. A memory controller
accesses PM at the granularity of a cache line (64 bytes). How-
ever, the access size of the internal 3D-Xpoint storage media
is 256 bytes. Such an access size mismatch results in read or
write amplification. The 3D-Xpoint media includes a buffer
(XPBuffer) and an associated prefetcher (XPPrefetcher) to ad-
dress this issue and mitigate its long latency. The XPBuffer
combines adjacent accesses to PM, and the XPPrefetcher
prefetches blocks in the 3D-Xpoint media to XPBuffer based
on the access pattern. In addition, the 3D-Xpoint media also
stores the inter-NUMA node coherence information [6, 27].
Hence, inter-NUMA accesses may involve writing to the 3D-
Xpoint media to update the coherence information, which is
the root cause of the slow inter-NUMA PM accesses (§2.3).
2.2 Concurrent accesses to PM
Prior work [14, 43] finds that PM performance depends on
the access size and the number of concurrent access threads.
The impact of access size is well understood. Applications
accessing PM perform well as long as the access size is large
enough to stress all the interleaved PM DIMMs. To under-
stand the impact of concurrent access threads, we run fio [4],
in which each pinned thread sequentially accesses a private
1GB file at a 2MB granularity. We evaluate on an eight-socket
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Figure 2: PM read and write bandwidth of PM file systems with
increasing threads for sequential 2MB access size. Results show that
both read and write performance collapse after exceeding a specific
limit. We observe a dramatic increase in read/write amplification
due to cache thrashing in the PM storage device.

NUMAmachine, with each socket having six interleaved Op-
tane DIMMs and a processor with 28 cores.
Figure 2 shows the read and write bandwidth of PM file

systems with increasing threads. Both read and write reach
their peak bandwidth with sixteen and eight threads, respec-
tively. After that, increasing threads severely degrades the
overall bandwidth. Specifically, with 224 threads, the read
and write bandwidth degrades by 3.7× and 17.2× compared
to the peak bandwidth, respectively.
Such performance collapse occurs because high concur-

rent accesses thrash the underlying cache of PM.2 Specifically,
a mismatch exists between the CPU access size (64 bytes)
and the underlying PM storage access size (256 bytes). PM
minimizes the read/write amplification overhead by batching
writes (XPBuffer) and prefetching (XPPrefetcher) (§2.1). How-
ever, with high concurrent accesses, the sequential accesses
from different threads convert into non-adjacent accesses.
These accesses arrive at the PM simultaneously, which re-
duces the efficiency of both caching and prefetching. As a
result, it increases read and write amplification, as XPBuffer
cannot keep up with the requests and the underlying PM
media latency starts to dominate for fetching or writing data,
leading to performance collapse. The read collapse threshold
is higher than write since reads perform better than writes
with the 3D-Xpoint media. Thus, PM can sustain the read
bandwidth despite reducing caching and prefetching effi-
ciency up to two NUMA nodes.

We find that both read and write bandwidth crashes after a
certain point. The results for writes are consistent with prior
works [14, 43]. However, we find that read bandwidth also
starts to collapse after two NUMA nodes. This is contrary
to prior work, which reports that the read bandwidth scales
with increasing threads.
Insight #1. Afile systemmust control the number of threads
that concurrently access PM for both reads and writes to
preserve the maximal performance within a NUMA node.

2We verify that the performance collapse is not due to the scalability
bottleneck in the file systems by confirming that most of the CPU cycles
are spent in accessing PM.
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Figure 3: Application throughput and the raw PM I/O for reading
data from PM (left) and writing data to PM (right) with the same
workload in §3.6 and the following configurations. All-local: Access
threads, PM, and DRAM (I/O buffer) are in NUMA node 0. PM-local:
Access threads and PM are in NUMA node 0; DRAM is in NUMA
node 1. PM-remote: PM is in NUMA node 0; access threads and
DRAM are in NUMA node 1. PM-remote-2nd: A consecutive run
with PM-remote.

2.3 NUMA impact on PM

We now analyze the NUMA effect on PM. WineFS [25] pro-
poses to migrate a thread to a PM NUMA node to mitigate
the NUMA impact [25]. Unfortunately, there is no in-depth
analysis of the effectiveness of this mechanism. Specifically,
suppose a thread copies data between remote PM and local
DRAM. In this case, migrating the thread to the respective
PM NUMA node still involves remote memory access, and
thus it is not clear why or how the thread migration can
improve performance.

We answer the aforementioned question by investigating
the performance impact of NUMA placements of thread,
DRAM, and PM. We configure fio with three setups. In
the All-local setup, threads, PM, and DRAM (i.e., I/O buffer)
are in the same NUMA node (node 0), which serves as the
best-case scenario. In the PM-local setup, threads and PM
are in the same NUMA node (node 0), while DRAM is in a
remote NUMA node (node 1). In the PM-remote setup, PM is
in NUMA node 0, while threads and DRAM are in the same
NUMA node (node 1). We evaluate this experiment using
PMFS with 28 threads for read and 8 threads for write. Other
file systems or thread counts produce similar results.

Figure 3 shows the PM read and write throughput with the
three setups. We note that both PM-local and PM-remote per-
form the same task of copying data between PM on NUMA
node 0 and DRAM on NUMA node 1. However, PM-local
achieves nearly 19.1× and 2.1× higher throughput than PM-
remote. Furthermore, PM-local achieves 60% and almost 100%
of All-local read and write throughput, respectively. The
above results are due to the implementation of the directory
coherence protocol in Intel machines [6, 27]. Specifically, Intel
maintains intra-NUMA and inter-NUMA directory informa-
tion separately [5]. The processor cache and memory store
the intra-NUMA directory and inter-NUMA directory infor-
mation, respectively. With the PM-local setup, the PM cache
blocks become NUMA-local: data is written to the processor



cache; while the DRAM cache block moves between NUMA
nodes. Hence, the system updates the PM directory locally,
while writing to DRAM to update its directory information.
However, with the PM-remote setup, the processor updates
DRAM directory information on the processor cache, while
updating its directory information on PM. Hence, the per-
formance difference between DRAM and PM leads to the
performance difference between PM-local and PM-remote.

To verify the above claim, we used Intel PCM [7] to mea-
sure the PM device level read/write IO, as shown in Figure 3.
For All-local and PM-local, the total bytes written and read
from the PM device match the actual I/O bandwidth, indicat-
ing no directory information update. However, PM-remote
incurs extra read and write traffic to the PM device. Further-
more, a consecutive read with PM-remote (PM-remote-2nd)
can restore the performance, while a consecutive write in
PM-remote still suffers from NUMA impact. The above evi-
dence confirms that PM-remote involves directory coherence
updates. Specifically, the extra read and write traffic is due
to updating the coherence information. The PM-remote-2nd
setup can only restore the read performance since, in this
case, coherence information update is not needed for read but
is still required for write. In summary, our performance anal-
ysis quantitatively confirms that placing the access threads
and PM in the same NUMA node minimizes the NUMA im-
pact on PM.
Insight #2. To minimize the pronounced PM NUMA impact,
and efficiently utilize remote PM, a file system should place
the access threads local to the PM.

3 Odinfs Design
Following our performance analysis on PM (§2), we present
Odinfs, a NUMA-aware PM file system that maximizes PM
performance within and across NUMA nodes through op-
portunistic delegation. This section first presents the design
goals that enableOdinfs tomaximize PM performance (§3.1),
an overview of Odinfs (§3.2), followed by the design of each
individual component.
3.1 Odinfs Design Goals
We design Odinfs to meet the following goals:

• Limiting concurrent PM access (access arbitration).
To avoid the PM performance collapse with many con-
current PM accesses (§2.2),Odinfs should limit the con-
currency to maximize PM performance within a single
NUMA node.

• Localized PM access (NUMA-awareness). To avoid
the performance collapse due to the PM NUMA impact,
Odinfs only allows threads to access local PM (§2.3).
This minimizes the PM NUMA impact and opens the
opportunity for Odinfs to utilize remote PM efficiently.

• Automatic parallel PM access (automatic paral-
lelization). The access arbitration and NUMA-aware
design goals allow Odinfs to maximize the local and
remote PM performance. To fully benefit from the aggre-

D
R
A
M

P
M Inode table

Journal

CPU CPU CPU ... ... CPU...

Dir index
Block allocator

Inode allocator

PM 0 ...

PM 0

PM 1

PM 2

PM N

...

PM N

Inode table

Journal

Inode table

Journal

Inode table

Journal

Dir index
Block allocator

Inode allocator

Dir index
Block allocator

Inode allocator

Dir index
Block allocator

Inode allocator

Per-inode
Range lock

Per-inode
Rwsem

zZZ

Super Block

Figure 4: Odinfs architecture. Odinfs maintains per-CPU data
structures to minimize the synchronization overhead. Furthermore,
Odinfs maintains the directory index, block allocator, and inode
allocator in DRAM to maximize performance. Odinfs enhances the
per-inode readers-writer semaphore with our optimized range lock
to increase concurrency.

gated PM bandwidth, Odinfs further parallelizes large
PM accesses across all NUMA nodes automatically with-
out application changes.

• Scalability. Scalability is the overarching goal of
Odinfs. Modern machines have multiple NUMA nodes
and hundreds of CPUs. The above three design goals
allow Odinfs to scale PM performance with an increas-
ing core count. Beyond that, Odinfs should maximize
concurrent accesses within the same file.

3.2 Odinfs Architecture
Figure 5 shows the key components of Odinfs and their
typical workflow. We next present the key design of Odinfs
and explain how they meet the design goals of Odinfs (§3.1).
(1) NUMA-striped data layout for cumulative PM band-
width utilization. Unlike other NUMA-aware PM file sys-
tems that try to localize file accesses within a single PM
NUMA node [25, 42], Odinfs stripes the data of every file
across PM on each NUMA node in a round-robin manner.
Odinfs makes this design choice since it can minimize the
PMNUMA impactwith delegation, as detailed below. Further-
more, stripping file data across PM enablesOdinfs to exploit
all available PM bandwidth to handle application requests,
which opens the door for automatic request parallelization.
(2) Delegation-based PM accesses to maximize PM per-
formance. A key insight in Odinfs is that the access ar-
bitration, NUMA-awareness, and automatic parallelization
design goals can be simultaneously achieved by decoupling
PM data accesses from application threads through dele-
gation. In particular, for each NUMA node, Odinfs creates
several background threads (delegation threads). Only the
delegation threads can access PM. When the application
thread needs to access PM, it first checks which NUMA node
the PM address belongs to and then sends the PM access re-
quests to one of the delegation threads on that NUMA node.
The delegation thread performs the access on behalf of the
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Figure 5: Overview of Odinfs. Each NUMA node has delega-
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plication thread issues a read system call. 2 Odinfs divides the
system call into multiple access requests based on the stripe size
and sends them to the delegation threads. 3 The delegation threads
read from PM in different NUMA nodes in parallel to service the
access requests. 4 The application thread returns.

application thread and informs the application thread when
the access completes.
Since only the delegation threads can access PM, they

effectively act as a central entity to arbitrate PM access. Re-
gardless of the application thread count, delegation threads
decide the level of concurrent accesses to PM. Thus, Odinfs
accesses PM with a thread count that avoids the PM perfor-
mance collapse with many concurrent access threads (§2.2).
This effectively achieves the arbitration design goal. Since
the delegation threads are in the same NUMA node as PM,
Odinfs always access PM locally, in either All-local or PM-
local setup (§2.3). Thus, Odinfs minimizes the PM NUMA
impact, achieving the NUMA-aware design goal.
(3) Automatic parallelization at the system call bound-
ary. The data striping and the delegation threads allow
Odinfs to serve IO requests from applications in parallel
across all the NUMA nodes. Moreover, the POSIX inter-
face enables Odinfs to automatically parallelize the requests
without modifying applications. Specifically, Odinfs divides
all data system call (e.g., read, write, pread, writev) requests
into multiple independent sub-requests based on the stripe
size, and sends them to the corresponding delegation threads.
The delegation threads then execute these requests by ac-
cessing PM in different NUMA nodes in parallel. Figure 5
illustrates the case. In this way, Odinfs achieves the auto-
matic parallelization design goals.
(4) High scalability with full PM performance. Delegat-
ing PM access allows Odinfs to maximize PM performance.
Odinfs further maximizes concurrent accesses to ensure
applications can benefit from the performance gains even
under the high contention case. Specifically, most existing
PM file systems globally protect the inode [2, 17, 25, 41].
Odinfs further increases the disjoint data access parallelism

with a readers-writer range lock for each inode. This enables
concurrent writes to disjoint regions and concurrent reads
from the same file region. The use of range lock poses a sig-
nificant challenge for enforcing crash consistency. Odinfs
overcomes this issue by preserving the whole inode lock and
falling back to it for concurrency control if needed. (§3.7).
Odinfs design novelty. To the best of our knowledge,
Odinfs is the first PM file system that addresses the goal of
access arbitration and automatic parallelization. While some
NUMA-aware file systems mitigate PM NUMA impact [25],
they either move computation to data [25], or move data
to computation [42]. Odinfs proposes a fundamentally dif-
ferent approach by using the delegation to minimize the
NUMA impact. Furthermore, Odinfs extends the scope of
the NUMA-aware file systems. Instead of focusing only on
minimizing the NUMA impact, Odinfs takes a radical ap-
proach of parallelizing and striping data across all PMNUMA
nodes for the best performance. Moreover, our controlled
PM access approach also minimizes I/O amplification (§2.2),
leading to lowwrite amplification. Lower write amplification
further increases the life of the PM device and minimizes the
long latency that happens due to wear leveling [39].
3.3 Handling system calls
Odinfs is a POSIX-compliant in-kernel file system. A key
novelty in Odinfs is the PM access delegation. However,
since delegation incurs communication overhead, Odinfs
does not delegate small PM accesses (§3.5). As a result, the
delegation threads only perform data operations, while the
metadata operations (e.g., open, close) are handled by ap-
plication threads. Furthermore, application threads directly
access PM for small data operations.
Handling bulk data operations with delegation. After
issuing a data system call (e.g., write) and entering into the
kernel space, the application thread divides the requests into
multiple sub-requests, each consisting of a data stripe (§3.4).
For each access request, the application thread walks the
indexing structure and obtains the corresponding address
on PM and the NUMA domain. It then enqueues the request
(e.g., source and destination memory address, access length)
on a corresponding ring buffer of the PM NUMA node. Af-
ter enqueueing all requests, the application thread waits for
delegation threads to complete and then returns to the user
space. Meanwhile, a delegation thread receives the request
via the ring buffer. The delegation thread dequeues the re-
quest and accesses PM on behalf of the application thread
by copying the data between PM and the specified DRAM
buffer. After completing the request, the delegation threads
notify the application threads.
3.4 NUMA-aware PM allocation

NUMA-aware allocator. To operate onmultiple PMNUMA
nodes and stripe file data across them (§3.2),Odinfs designs a
NUMA-aware PM allocator. Odinfs inherits the performant
and scalable allocator design from NOVA and WineFS and ex-



tends the allocator design to handle multiple PM NUMA
nodes. Odinfs uses a per-CPU allocator residing on DRAM,
in which each CPU owns multiple private PM pools, each
corresponding to one PM NUMA node (Figure 4). Block allo-
cation works as follows: The allocator receives the allocation
request with a block size and a NUMA node as arguments.
It first tries to serve the request from its own per-CPU PM
pool. If that fails, it tries to serve the requests from the pool
in the specified NUMA node having the largest free space. If
both attempts fail, the allocator returns an error.

Layout policy. Odinfs employs different layout policies
for file data, indexing structure, and other metadata. Odinfs
stripes the file data across all PM NUMA nodes to enable
parallel access (§3.2). Since Odinfs does not delegate small
PM accesses (§3.5), it optimizes for small files by placing the
first stripe of each file in the local PM node as the creation
thread, if possible. This assumes that the following accesses
are likely from the same NUMA node thanks to temporal lo-
cality. Odinfs places the remaining stripes in a round-robin
fashion across all PM NUMA nodes. With our system, the
memory controller in each NUMA node interleaves six PM
DIMMs at 4KB granularity. Therefore, we set the stripe size
as 32KB to maximize PM performance. Since Odinfs does
not delegate access to the indexing structure, Odinfs places
it in PM local to the CPU that creates the file, leveraging
temporal locality. Regarding other metadata, Odinfs places
the superblock in the first PM NUMA node and per-CPU
metadata (e.g., journaling) in the local PM node (Figure 4).

3.5 Opportunistic delegation

Since delegating PM accesses involves communication over-
head, it is not always beneficial, especially for small accesses.
Thus,Odinfs performs opportunistic delegation only for PM
accesses that might improve the performance. Based on our
performance analysis (§2), Odinfs uses different delegation
policies for PM reads and writes.

Write access. Odinfs always delegates write accesses with
an access size larger than 256 bytes (XPBuffer size) to limit
the performance collapse and minimize the NUMA impact.

Read access. Unlike writes, Odinfs chooses a more re-
laxed policy for delegating reads. Specifically, PM read per-
formance starts to collapse with a high thread count (> 56).
Furthermore, the PM read performance can be restored af-
ter repetitive remote reads (PM-remove vs. PM-remote-2nd
in Figure 3). Thus, Odinfs checks the number of threads
that read from each PM NUMA node for every fixed inter-
val. If it finds that for one PM NUMA node, the number of
threads is constantly higher than the collapse threshold (56),
Odinfs arbitrates access to that PM device by using the same
policy as write. Otherwise, Odinfs only delegates the read
accesses that may benefit from the automatic parallelization
(i.e., those with access size larger than the stripe size: 32KB).
We find this policy is enough to achieve good performance.

Saving CPU cycles. A delegation thread uses a variant of
the spin-then-park strategy to 1) avoid wasting CPU cycles
when there is no request and 2)minimize the long latency due
to naively parking and waking up threads [26]. Odinfs uses
the IO size of application threads as a heuristic to decide the
length that a delegation thread should spin before parking.
The spinning is inversely proportional to the IO request
size. For example, for large IO requests, delegation threads
spin for a shorter duration because they can amortize the
parking/wake-up latency by handling long requests. On the
other hand, delegation threads spin for a longer duration for
small IO requests, since we assume that application threads
are likely to issue sparse requests in this case. We find that
this heuristic works well for every evaluated workload.
3.6 Concurrency control
Prior in-kernel PM file systems [17, 25, 41] rely on VFS’s
inode lock for concurrency control. Inspired by recent
works [12, 36], Odinfs increases fine-grained access to a
file with a per-inode readers-writer range lock. The lock
allows parallel writes to disjoint regions, while concurrent
reads on the same region in a file. The existing concurrency
control mechanisms still protect other operations.
3.7 Crash consistency

Consistency mode. Odinfs currently supports two consis-
tency modes: POSIX and sync [24]. The POSIX mode guar-
antees that all metadata operations are synchronous and
atomic (e.g., ext4). The sync mode is the default setup that in
addition to POSIX mode, further ensures that all data opera-
tions are synchronous but not atomic. Specifically, when the
system call returns, the data is guaranteed to persist on PM.
However, a crash may cause data operations being partially
completed. This provides the same guarantee as PMFS and the
“relaxed mode” of NOVA. If required, we can extend Odinfs to
provide other consistency modes [24, 25, 41].
Atomic updates and per-CPU journaling. Odinfs pro-
vides metadata crash consistency with atomic updates [17]
and per-CPU journaling [41]. Intel architecture only sup-
ports 8 bytes as atomic updates and (aligned) 16 bytes with
the double compare-and-exchange operation. Odinfs lever-
ages this to update simple metadata whenever possible. For
complex metadata updates, Odinfs leverages journaling for
crash consistency. Note thatOdinfs does not need to journal
file data for its current consistency models. Odinfs inher-
its the per-CPU undo journal design from WineFS [25]. As
detailed below, Odinfs ensures a file can only be in one per-
CPU journal at any time. Hence, Odinfs can recover from
the per-CPU journals by using a global transaction ID.
Ensuring crash consistency with range locks. Since
the range lock allows multiple threads to access the same
file (§3.2), ensuring crash consistency becomes a challenge.
Odinfs addresses this issue by maintaining an invariant that
a file can only be in one per-CPU journal. The key idea is
that if a thread performs any operation that requires jour-



naling, it must acquire the writer lock of the whole inode
lock for exclusiveness, even if this may reduce concurrency.
Specifically,we classify data operations into three types: read,
overwrite (writes to an existing file block), and unallocated
write (writes to an unallocated file block, such as appending
a file or writing to holes in a sparse file). Only the metadata
stored in the inode, such as access ormodification time, needs
to be updated for read and overwrite. Following PMFS strat-
egy, Odinfs stores these fields in a 16-byte PM block and
updates them atomically without journaling. Hence, Odinfs
can allow concurrent reads and overwrites to the same file.
However, an unallocated write updates both inode and mul-
tiple blocks in the indexing structure and thus requires jour-
naling. Hence, Odinfs only allows one thread to perform
unallocated write at a time to maintain the invariance.

Thus, for reads, Odinfs acquires the reader lock of the
whole inode lock and reader lock of the relevant range in
the range lock. For writes, Odinfs distinguishes between
overwrite and unallocated write. Odinfs first acquires the
reader lock of the whole inode lock and walks the indexing
structure to identify whether the write involves writing to
unallocated blocks. No journaling is required if the write only
updates allocated blocks (i.e., overwrite). Hence, the thread
can proceed by acquiring the writer lock of the relevant
range in the range lock. Otherwise, it is an unallocated write
and requires journaling. The thread then upgrades from the
reader lock to the writer lock of the whole inode lock to
ensure the inode is only in one per-CPU journal.

4 Odinfs implementation

File system implementation. We modify and extend
PMFS [17] to design and implement Odinfs, while also re-
ferring to NOVA [41] and WineFS [25]. In summary, the inode
table consists of multiple blocks forming a linked list. The
directory data structure is similar to a linked list. The in-
dexing structure of a regular file is a B-tree. Crash consis-
tency is achieved with atomic updates and undo journaling
(§3.7). Odinfs maintains the inode allocator, block alloca-
tor, and cached directory entries in DRAM with red-black
trees. The state of the inode and block allocator needs to
persist across power cycles. Thus, Odinfs writes their state
to PM during unmount and reads from PM during mount.
Upon crash, Odinfs recovers the state by scanning used
inodes and their indexing structures. To minimize the syn-
chronization overhead, inode allocator, block allocator, inode
table, and journaling use per-CPU data structures. To han-
dle complex metadata operations, such as rename or mmap,
Odinfs follows PMFS by using the synchronization mech-
anisms in both VFS and the file system. We implemented
Odinfs as a kernel module for the 5.13.13 Linux kernel and
thus, its deployment challenges andmanageability are similar
to other in-kernel file systems. Odinfs is publicly available
at https://github.com/rs3lab/Odinfs.

Efficient communication with delegation threads. Ap-
plication and delegation threads communicate via a ring
buffer (§3.3). To minimize communication overhead, we
adopt the scalable ring buffer implementation from Sol-
ros [32]. Furthermore, each delegation thread has its private
ring buffer to reduce the contention. The application threads
send requests to a random delegation thread in the target
NUMA node to load balancing delegation threads. We choose
this algorithm since it incurs minimal runtime overheadwith-
out central coordination while achieving good performance.
For PM access request notification, we use a pair of per-
NUMA counters: issued counter and completed counter. The
application thread increases the issued counter for each re-
quest, and sends the pointer of the completed counter. After
issuing all the requests, the application thread waits until
the number of issued request count on each NUMA node
equals the per-NUMA completed count, which is atomically
updated by delegation threads.
Accessing userspacememory via delegation. Delegation
threads do not have access to the application address space,
even though both of them are in the kernel space when
handling a system call. We resolve this issue by first letting
the application thread pre-faults and pins the user buffer
pages in the kernel. It then passes the user buffer along with
its root page table information (mm->pgd) to the delegation
thread. Upon receiving the request, the delegation thread
walks the page table for each user buffer page to figure out the
physical page. Since the Linux kernel maps all physical pages
into its address space linearly, the delegation threads can
obtain the corresponding kernel virtual address by adding
an offset. The delegationt threads can then access the user
buffer with the kernel virtual address.
Minimizing synchronization overhead. To achieve the
scalability design goal (§3.1), Odinfs further adopts state-of-
the-art synchronization mechanisms to minimize the syn-
chronization overhead. Specifically, Odinfs enhances the
readers-writer range lock (§3.6) with BRAVO [15]. BRAVO op-
timizes the reader side performance of a readers-writer lock
by leveraging a hash table, thus avoiding updating the shared
reader counters. As discussed in §3.7, since a thread only ac-
quires the writer lock of the whole inode lock for unallocated-
write, we use the readers-writer semaphore in [30] for the
whole inode lock. The per-CPU readers-writer semaphore
optimizes the reader side performance of the semaphore with
a per-CPU counter.
CPU usage fairness with delegation. To ensure fair-
ness, Odinfs charges the request serving time of delegation
threads to the application thread. Specifically, the applica-
tion thread passes a pointer to its CPU usage time (vruntime)
in each request, and the delegation threads thus atomically
update it accordingly.
Implementation limitations. In the current implemen-
tation, we pin each delegation thread on a particular CPU.

https://github.com/rs3lab/Odinfs.


Furthermore, with the current Linux scheduler, if application
threads are also pinned to the same CPU, both the delega-
tion and the application threads’ performance will degrade.
We plan to explore a lightweight and more efficient thread
scheduling algorithm to address this issue.

5 Evaluation
We evaluate Odinfs by answering the following questions:

• How does opportunistic delegation affect Odinfs’ per-
formance? (§5.2)

• What is the I/O amplification factor of Odinfs? (§5.3)
• Does Odinfs scale with different delegation thread
counts and PM NUMA nodes? (§5.4)

• Does Odinfs scale data operations? (§5.5)
• How does Odinfs perform with real-world applica-
tions? (§5.6)

5.1 Evaluation methodology
Evaluation environment.We conduct our evaluation on an
eight-socket server. Each socket equips a 28-core Intel Xeon
processor (224 cores in total) and six 128GB Intel Optane
DIMMs interleaved at 4KB (768GB on each NUMA node).
The machine has a total DRAM size of 768GB, with two A100
and two A5000 Nvidia GPUs. The server is running Linux
kernel v5.13.13 and hyper-threading is disabled.
Odinfs configuration and target comparisons. Unless
otherwise mentioned, we configure Odinfs to run on all
eight NUMA nodes with twelve delegation threads on each
NUMAnode. We evaluate and compareOdinfswith four PM
file systems: ext4 [2], PMFS [17], NOVA [41], and WineFS [25].
We configure ext4with the DAX option and all the other file
systems with the default setup. They provide weaker or the
same level of consistency as Odinfs (§3.7). Since these four
file systems operate on a single PM NUMA node, we further
include one setup: ext4(RAID0). Specifically, we create a
RAID0 across all eight PM NUMA nodes using dm-stripe [1]
and mount ext4 on top of it. We cannot run RAID0 with the
other file systems because unlike ext4, other PM file systems
access the PM storage device by memory mapping it into the
kernel address space and accessing it with load and store. The
RAID0 device created by PM block devices does not support
memory mapping to the kernel address space. Because of
this, existing PM file systems crash at the time of mounting.
To the best of our knowledge, ext4(RAID0) is the only

available setup that utilizes all the PM NUMA nodes.3 How-
ever, we further emulate a non-existent setup: NOVA(MN)
(NOVA with multiple nodes) to estimate the performance of a
NUMA-aware NOVA. Specifically, we mount a single instance
of the NOVA file system on each NUMA node and evenly dis-
tribute the testing files among instances.
Workload. Our workloads include a wide range of file
system use cases, covering both data- and metadata-
intensive ones. For microbenchmarks, we chose fio [4] and

3WineFS crashed when mounting on multiple PM NUMA nodes on our
server.

FxMark [31] to measure throughput, latency, and scalabil-
ity, respectively. We configure fio to let each thread access
a 1GB private file. We only show the results of sequential
access due to space limitations and confirm that random ac-
cess yields similar results. We evaluate fio with both small
(4KB) and large (2MB) access sizes. For macrobenchmarks,
we use Webserver, Fileserver, Videoserver, and Varmail in
Filebench [3] and DNN checkpointing.
5.2 Throughput and latency
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Figure 6: Throughput of evaluated file systems with up to 224
threads. Odinfs scales and outperforms others by up to 24.7×, as it
utilizes all PM NUMA nodes and controls concurrent PM accesses.
Throughput. We use fio to evaluate Odinfs’s throughput
and latency. Figure 6 shows the throughput of all evaluated
file systems. For 4K-read, when the thread count is low (≤
28), all the evaluated file systems perform similarly. How-
ever, only Odinfs and NOVA(MN) scale beyond one NUMA
node, outperforming other file systems by 9.4× with 224
threads. For 4K-write, when the thread count is less than
eight, Odinfs suffers from the communication overhead due
to delegation and is up to 62% slower than other file systems.
However, when the thread count reaches a certain thresh-
old, the throughput of ext4, PMFS, and NOVA starts to collapse
due to the reducing efficiency of XPBuffer and XPPrefetcher
(§2.2). Instead, Odinfs can maintain its throughput thanks
to limiting PM accesses, outperforming others by up to 8.1×.

With the 2MB access size, Odinfs benefits from accessing
all PM NUMA nodes in parallel to serve IO requests. As a
result, Odinfs outperforms other file systems even with a



low thread count. Odinfs allows applications to utilize most
PM bandwidth with eight threads for write and 28 threads for
read. Odinfs similarly scales both read and write through-
put, outperforming other file systems by 1.1× to 24.7×, and
up to 14.8× for 2M-read, and 2M-write, respectively. The
throughput drop in Odinfs with 2M-read is likely due to
the increasing contention in the ring buffer or the shared
counters §4. We plan to address this issue by investigating
mechanisms to further increase the scalability of the com-
munication mechanisms.

Odinfs scales because (1) Odinfs utilizes all the PM
NUMA nodes in the system , and (2) it limits the num-
ber of PM access threads to avoid the performance col-
lapse. ext4(RAID0) and NOVA(MN) similarly utilize all the PM
NUMA nodes and thus performs closest to Odinfs. How-
ever, ext4(RAID0) and NOVA(MN) only scale read operations.
ext4(RAID0) cannot scale 4K-read due to a scalability bot-
tleneck in small reads (§5.5). With 2M-read, they only reach
the throughput of Odinfs with a high thread count.
Summary: For small I/O requests, Odinfs incurs overhead
with a small thread count but preserves PM performance
with a large thread count. For large I/O requests, Odinfs
benefits from handling them by paralleling accesses to PM
NUMA nodes. This allows an application to utilize most of
the PM bandwidth even if it has a small thread count. In
summary, Odinfs scales both read and write operations for
both small and large I/O sizes.
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Figure 7: The median and 99 percentile latency of the evaluated
file systems with a 4KB access size. Odinfs constantly maintains
the low latency due to delegating PM accesses, avoiding the perfor-
mance collapse within and across NUMA nodes.

Latency. Figure 7 presents the mean and the 99 percentile
latency of all the evaluated file systems. For all the other
file systems, increasing threads lead to either contention on
PM or suffering from PM NUMA impact, resulting in sky-
rocketing latency. Thanks to delegation, Odinfs constantly

maintains low latency. Its median and 99 percentile are 2.8µs
and 5.7µs for 4K-read, 5.4µs to 12.0µs and 6.3µs to 32.4µs for
4K-write, respectively, outperforming the other file systems
by up to 190×. Odinfs consistency has lower latency than
ext4(RAID0). The lowest median latency of other file sys-
tems is 1.6µs for 4K-read and 2.6µs for 4K-write with one
thread. However, their latency quickly worsens after sixteen
read threads and eight write threads. With a 2MB access size,
the trend is similar. The performance advantage of Odinfs
is even higher due to parallelization.
Summary : Delegating PM accesses enablesOdinfs to main-
tain low latency.
5.3 IO amplification
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Figure 8: The read and write IO amplification of the evaluated file
systems. Odinfs achieves low IO amplification since delegation
maintains the caching/prefetching efficiency.

The conventional wisdom is that IO amplification is rel-
evant for traditional storage devices (especially SSD) but
not for PM since it is byte-addressable. However, due to the
access size mismatch between the memory controller and
the PM storage media, PM also suffers from IO amplifica-
tion if the internal caching/prefetching becomes inefficient
(§2.2). A high IO amplification reduces the PM lifetime and
causes a latency spike triggered by the internal wear-leveling
operation [43]. Thus, a PM file system must reduce it.
We report the I/O amplification as the number of bytes

read from (or written to) the underlying PMmedia divided by
the number of bytes requested (or issued) by the CPUs. We
use Intel PMWatch [9] to obtain the relevant data. Figure 8
shows the I/O amplification for different file systems with the
same setup in §5.2. Odinfs constantly achieves a low IO am-
plification (i.e., less PM-level IO incurred for the same work-
loads) with increasing threads since delegation limits con-
current accesses and thus preserves the caching/prefetching
efficiency. All other file systems suffer from a high IO am-
plification rate (i.e., more PM-level IO incurred for the same
workload), validating their low throughput (Figure 6) and
high latency (Figure 7).
Summary : I/O amplification is still relevant for PM. Odinfs
maintains a balance of amplification and high PM utilization.
Our delegation scheme limits concurrent accesses, which
maintains the caching/prefetching efficiency.



5.4 Sensitivity analysis

This section presents how delegation thread counts and PM
NUMA nodes affect Odinfs’s performance. We use the same
experimental setup in §5.2.
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Figure 9: Odinfs’s throughput with different delegation threads.

Odinfs with varying delegation threads. The optimal
number of delegation threads for Odinfs depends on many
factors, such as the relative speed between the processor
and PM. Thus, we run experiments that vary the delegation
thread counts to find the optimal one for our system.
Figure 9 shows the results. With 4K-read, the delegation

thread counts have no impact because Odinfs does not del-
egate read accesses (§3.5). With 2M-read, the throughput is
close to being saturated with twelve delegation threads but
continues to increase until twenty delegation threads. With
4K-write and 2M-write, the throughput of Odinfs increases
with up to eight or twelve delegation threads, respectively.
Hence, we chose twelve delegation threads as the default
setup for Odinfs since it performs well in all four setups.

Summary : The optimal delegation thread number in
Odinfs depends on many factors and thus should be de-
cided with experiments. Twelve delegation threads achieve
a balanced performance in our system.
Odinfs with varying PM NUMA nodes. Figure 10 shows
Odinfs’s throughput with a different number of PM NUMA
nodes. For 4K-read, Odinfs enables delegation to prevent
throughput collapse after 56 threads with one PM NUMA
node and 112 threads with two PM NUMA nodes (§3.5). For
the other three setups,Odinfs always delegates PM accesses.
The results show that (1) Odinfs can maintain the through-
put with a high thread count for different numbers of PM
NUMA nodes, and (2) Odinfs scales PM performance with
increasing PM NUMA nodes.
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Figure 10: Odinfs with different numbers of PM NUMA nodes.

Name Description

DRBL Each thread reads a private block in a private file.
DRBM Each thread reads a private block in a shared file.
DRBH Each thread reads a shared block in a shared file.
DWOL Each thread overwrites a private block in a private file
DWSL Same as DWOL plus an fsync() after each writes
DWAL Each thread appends to a private file
DWOM Each thread writes to a private block in a shared file

Table 1: Summary of microbenchmarks in the FxMark suites [31].
Each thread repetitively performs the corresponding operations in
each microbenchmark.

Summary : Odinfs scales PM performance with increasing
PM NUMA nodes because of its efficient delegation scheme,
showing the generality of its design.
5.5 Datapath scalability
To test whether Odinfs achieves the scalability design goal,
we evaluate it with FxMark [31] microbenchmark suites.
Odinfs mainly focuses on data operations and partially
reuses the scalable data structures in NOVA and WineFS for
metadata scalability. Hence, we focus on evaluating the scal-
ability of data operations. Table 1 summarizes the FxMark
microbenchmarks used in the evaluation. We use all the
data operation microbenchmarks from FxMark except DWTL,
where each thread concurrently truncates a private file; DWTL
does not involve typical data operations (i.e., read or write),
and thus we view it as a metadata microbenchmark.

Figure 11 shows the scalability results of the evaluated file
systems. Among the compared file systems, only PMFS and
NOVA can scale one microbenchmark: DRBL. Instead, Odinfs
scales all seven evaluated microbenchmarks. For read mi-
crobenchmarks, Odinfs is 12% slower than PMFS in DRBL.
However, Odinfs outperforms other file systems by around
233× and 269× in DRBM and DRBH, respectively. For DRBM
and DRBH, all other evaluated file systems suffer from the
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Figure 11: Scalability of data operations with the evaluated file
systems. DWSL is not shown since its result is the same as DWOL.
Other evaluated file systems only scale DRBL while Odinfs scales
all microbenchmarks, thanks to controlling PM accesses, scalable
metadata structures and concurrency control mechanisms, and the
unique readers-writer range lock.

default readers-writer semaphore implementation in the
Linux kernel, resulting in high locking overhead. The scal-
ability of Odinfs comes from the unique scalable synchro-
nization mechanisms (per-CPU readers-writer semaphore
and BRAVO on top of the range lock) that minimize the
synchronization overhead (§3.6, §4).

For write microbenchmarks, Odinfs outperforms other
file systems by 53.8×, 8.2×, and 8.3× in DWOL (DWSL)4, DWAL,
and DWOM, respectively. Odinfs scales DWOL and DWSL due to
arbitrating PM accesses and thus prevents performance col-
lapse caused by concurrent writes.Odinfs scales DWOL due to
arbitrating PM accesses and the scalable allocator design. In
addition to arbitrating PM accesses and the scalable allocator,
Odinfs scales DWOM with the readers-writer range lock.

Summary : While other evaluated file systems only scale
DRBL, Odinfs scales all seven evaluated microbenchmarks
with PM access control, scalable metadata structures, scalable
concurrency control mechanisms, and the unique readers-
writer range lock.

Name # Files Avg. file size I/O size (r/w) R/W

Fileserver 10K 2MB 1MB / 256KB 1:2
Webserver 20K 4MB 1MB / 256KB 10:1
Videoserver 226 512MB 1MB / 1MB 27:1
Varmail 100K 16KB 1MB / 16KB 1:1

Table 2: Configuration of the Filebench workloads. Fileserver, Web-
server, and Videoserver is data-intensive with large I/Os. Varmail
is metadata-intensive with small I/Os, representing the worst case
for Odinfs. Webserver and Varmail are write-intensive while File-
server and Videoserver are read-intensive.

5.6 Macrobenchmarks
We use a set of benchmarks from Filebench [3] as mac-
robenchmarks to evaluate Odinfs. We select four bench-
marks: Fileserver, Webserver, Videoserver, and Varmail with
configurations shown in Table 2. We configure Fileserver,
Webserver, and Videoserver to work on relatively large files,
reflecting the trend of growing sizes with these types of files.
Varmail works on a large number of small files and performs
small IO, representing the worst case for Odinfs. Webserver
and Videoserver are read-intensive while Fileserver and Var-
mail are write-intensive. For Videoserver, since not all the
threads are doing the same task, we measure the overall
read and write throughput. For the other benchmarks, we
measure the number of operations per second.
Figure 12 shows the result. For Fileserver, Odinfs out-

performs other file systems by 4.8× to 25.3×. For Web-
server, Odinfs outperforms all the single PM file systems
and ext4(RAID0) by at least 3.8× and 1.6× to 3.1×, re-
spectively. For Videoserver, Odinfs outperforms single PM
file systems by around 6.6× and at least 5.4× for read
and write throughput, respectively. Odinfs outperforms
ext4(RAID0) by up to 2.3× for read throughput and around
7.3× for write. For these benchmarks, Odinfs’s perfor-
mance advantage comes from delegating PM accesses to
preserve the maximum performance and utilizing the band-
width of all the PM NUMA nodes. For read-intensive bench-
marks: Webserver and Videoserver, ext4(RAID0)’s perfor-
mance matches Odinfs with large thread counts, which is
consistent with results in §5.2. However, Odinfs still out-
performs ext4(RAID0) by 1.6× with 224 threads for Web-
server. ext4(RAID0) achieves the same read throughput for
Videoserver with high thread counts. However, this is be-
causeOdinfs still maintains around 4GiB/s write throughput
while ext4(RAID0) completely starves the write threads.

Varmail is the worst case forOdinfs since delegating small
I/Os incurs large communication overhead. However, the
results show that Odinfs can maintain the similar perfor-
mance as NOVA and WineFS. Odinfs outperforms PMFS, ext4,
and ext4(RAID0) by 6.0× to 32.7×. The performance advan-
tage of Odinfs, NOVA, and WineFS comes from the scalable

4The DWSL result is the same as DWOL since all evaluated file systems treat
fsync() as a no-op.
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Figure 12: Results of the Filebench benchmarks. See Table 2 for
configurations. Results show that Odinfs continue to scale PM
performance with macrobenchmarks. Odinfs behaves the same as
NOVA in the worst-case scenario: Varmail.

metadata structures (e.g., in-memory directory indexing and
per-CPU inode table).

Model VGG16-ImageNet1K BERT-SQuAD
Frequency (Steps/ckpt) 34 86
Checkpoint Size (MB) 1055 3828

Table 3: Machine learning checkpointing workloads setup. We use
the same frequencies as [33]. A step refers to a training mini-batch.

Machine learning checkpointing. We also evaluate
Odinfs with deep neural networks (DNN) checkpointing.
DNN training is a time-consuming process and thus must
checkpoint its state into persistent storage for fast failure
recovery [33]. PM allows high frequency checkpointing and
thus minimizes the window of losing work. Table 3 lists
models and datasets we use. We measure the end-to-end ex-
ecution time of training one epoch with checkpointing and
the time spent in the file systems. Figure 13 shows the result.
Odinfs results in end-to-end execution time reduction over
the evaluated file systems by at least 2.6% on VGG16 and
12.3% on BERT. When looking into the time spent in the file
systems, Odinfs outperforms evaluated file systems by at
least 3.9× on VGG16 and 5.7× on BERT.
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Figure 13: Machine learning checkpointing benchmark.

Summary :Odinfs continues to scale PM performance with
macrobenchmarks. Odinfs achieves similar performance to
state-of-the-art PM file systems in its worst-case scenario.

6 Discussion
6.1 PM I/O scheduling
The Videoserver result in §5.6 indicates that PM file systems
similarly need to employ I/O scheduling as traditional file
systems do to, for example, ensure fairness among applica-
tions [21, 44]. An I/O scheduling algorithm can be imple-
mented in the system call, page cache, or block layer. Prior
research has shown that an I/O scheduling algorithm is more
effective if implemented across the various layers of the stor-
age stack [44]. Existing PM file systems [2, 17, 25, 41] bypass
the page cache and access PM directly with loads and stores.
Hence, they can only implement the I/O scheduling algo-
rithm in the system call layer, limiting the effectiveness of
the scheduling algorithm.
Since Odinfs forces application threads to delegate bulk

PM accesses to the delegation threads, the delegation threads
thus become a central entity to access PM, acting similarly
to the block layer in the traditional storage stack. Hence, the
delegation enablesOdinfs to perform I/O scheduling in both
the system call layer and block layers. Exploiting this unique
feature, we plan to extend Odinfs to support various I/O
scheduling algorithms to ensure fairness or prevent head-of-
line blocking to further improve its performance.
6.2 Comparison against RAID0
Odinfs’s data layout policy is similar to RAID0 in that it
stripes data across multiple PM NUMA nodes in a round-
robin manner (§3.4). However, unlike RAID0, Odinfs em-
ploys PM-specific optimizations for small files (i.e., put the
first file stripe in the local PM of the creation threads). Fur-
thermore,Odinfs stripes in the file level while RAID0 stripes
in the disk level. Odinfs thus maximizes parallelization by
ensuring adjacent file stripes are highly unlikely in the same
PM NUMA node.
A fundamental difference between Odinfs and RAID0 is

that Odinfs delegates PM access. As discussed across the
paper, this enables Odinfs to avoid the bandwidth collapse
with many access threads, minimize the PM NUMA impact,



and access PM in parallel, thus maximizing the PM perfor-
mance. A typical RAID0 implementation achieves none of
the above tasks. As a result,Odinfs consistently outperforms
ext4(RAID0) with the evaluated benchmarks (§5).
6.3 Applicability to future PM hardware
Two of Odinfs’s design goals: localized PM access and ac-
cess arbitration, are based on the current implementation of
PM hardware (§2). Although there is a possibility that future
PM hardware may mitigate the above issues, we believe that
many of Odinfs’ designs will remain effective. Specifically,
the PM NUMA impact is mostly due to the implementation
of directory coherence information. Some of the recent Intel
two-socket machines support snoop protocol for PM, and a
prior work [27] has reported that the snoop protocol can sig-
nificantly mitigate the PM NUMA impact. However, we find
that many (large) multi-socket machines, only support direc-
tory coherence protocol. Hence, we believe that localized PM
access is still a practically important design consideration.

Excessive concurrent access leads to performance collapse
since it renders the on-DIMM caching and prefetching ineffi-
cient (§2.2). Furthermore, the access size mismatch between
the CPU (64 bytes) and the underlying storage media (256
bytes) exacerbates the performance collapse. It also reduces
the lifetime of the PM device due to the incurred I/O am-
plification. While it is difficult to predict the feasibility of
changing the PM access sizes in future PM hardware, we
expect that such changes would be non-trivial, especially
making the PM access size as small as the CPU access size.
This would require changes to other critical components in
a PM DIMM, such as the address indirection table (AIT) and
the DIMM-level prefetching logic. Furthermore, despite the
reduced PM access size, limiting concurrent access might
still be needed to avoid the performance degradation caused
by DIMM-level cache thrashing.

In summary, we expect that both localized PM access and
access arbitration will still be relevant for future PM hard-
ware. Moreover, since Odinfs only incurs a small delegation
overhead, it provides a “cost-effective” solution to the above
problems without hardware changes. In addition, Odinfs’
automatic parallelization design will remain useful to utilize
the aggregated PM bandwidth across NUMA nodes without
modifying the application code. We believe that the auto-
matic parallelization design can be further generalized to
other present or future storage systems (e.g., CCIX-based
storage systems [13]).

7 Limitations
Extra CPU usage. Odinfs’s design incurs additional CPU
usage due to parallelizing large PM accesses and the commu-
nication between the application thread and the delegation
thread. Odinfs’s current design reduces the CPU usage by
pausing the delegation threads if there is no incoming re-
quest (§3.5). In addition, Odinfs can further trim down the
CPU usage by (1) offloading PM accesses to I/OAT DMA and

(2) disabling the delegation when there is no idle CPU on
one NUMA node.
Stripping overhead. Odinfs stripes the data of a file across
all NUMA nodes so that even a single-threaded application
can benefit from the aggregated PM bandwidth through au-
tomatic parallelization (§3.2). However, since the stripping
often involves remote access, while the delegation mecha-
nism already significantly mitigates the NUMA impact, the
stripping may reduce the best-case throughput and latency.
Specifically, without stripping, a best-case scenario occurs
when the application and the PM data are in the same NUMA
node. However, benefiting from such a scenario requires ex-
tra code development to remember the NUMA node where
the data resides and pin application threads to the NUMA
node, which also limits scheduling flexibility.

If an application does not benefit from the automatic par-
allelization and wishes to enjoy the best-case performance,
we expectOdinfs can work without stripping by placing the
data of a file on a single NUMA node. In this case, Odinfs
still achieves the other two design goals: (1) limiting con-
current accesses and (2) minimizing the PM NUMA impacts.
Large I/O accesses can still be parallelized to one NUMA
node but not all NUMA nodes as before.
Memory mapping. Due to stripping, Odinfs’s memory
mapping (mmap) performance is lower than other single-
NUMA-node PM file systems in the best-case scenario as
described above. To optimize this, Odinfs can use a copy-
then-mmap model similar to NOVA [41]. Specifically, upon
mmap, Odinfs allocates PM pages in the same NUMA node,
copies the file content in remote NUMA nodes to these pages,
and mmap the PM pages to the applications. Upon msync or
munmap,Odinfs propagates the changes in the replicated PM
pages back to the files.

8 Related work
PM file system. Unlike Odinfs, most existing PM file sys-
tems are designed to work on a single PM NUMA node and
do not limit the number of access threads [12, 16, 17, 24,
28, 34, 41], leading to PM performance collapse. In terms
of NUMA-aware PM file systems, Xu et al. proposed a new
ioctl command that allows applications to specify the pre-
ferred NUMA node of a file [42]. This approach requires
application changes and relies on the application to avoid
the NUMA impact. WineFS [25] assigns a home NUMA node
to each application thread and migrates the thread to the
home NUMA node before writing to PM. As acknowledged
by the authors, threadmigration is expensive. Furthermore, it
still suffers from the NUMA impact when two threads from
different home nodes share the same file. Unlike Odinfs,
none of these works focuses on utilizing both local and re-
mote PM simultaneously asOdinfs does. ext4(RAID0) [1, 2]
does not control the number of access threads nor resolve
the PM NUMA impact, leading to lower performance than
Odinfs in most cases.



OtherNUMA-aware PM systems. PACTree uses the snoop
protocol to minimize the PM NUMA impact [27]. However,
the snoop protocol is unlikely to scale on large NUMA ma-
chines and may thus impact the performance of memory-
intensive applications. Nap caches frequently accessed items
in DRAM to avoid remote PM accesses [38]. However, Nap
relies on a skewed access pattern to benefit from caching and
still suffers from the PM NUMA impact upon cache misses.
Odinfs proposes a fundamental different approach that uses
delegation to address the PM NUMA impact.
Scalable file system. There are scalable file systems for both
traditional storage devices [11, 30, 36] and PM [12, 41]. NOVA
designs several scalable metadata structures, and Odinfs in-
herits them. Similar to Odinfs, there are file systems scaling
the data operations with range locks [12, 36]. The closest
work to Odinfs is KucoFS [12]. KucoFS is a PM file system
that scales metadata operations through bypassing the VFS
and scales data operations with range locks and versioned
read. However, KucoFS shows that it cannot scale data oper-
ation benchmarks in FxMark beyond fifteen threads, while
Odinfs scales all of them up to 224 threads. The difference is
that (1) Odinfs uses delegation to prevent PM performance
collapse while minimizing the NUMA impact. (2) Odinfs
uses state-of-the-art concurrency mechanisms which mini-
mize the synchronization overhead.
Localized I/O threads. Since PCIe devices also conform to
NUMA topology, utilizing localized I/O threads (i.e., placing
I/O threads in the same NUMA code as the I/O devices) is a
relatively common design in many non-PM systems [22, 35,
45]. To realize the old wisdom in PM systems, Odinfs has
encountered and resolved many unexplored challenges (§3,
§4), leading to a design significantly departs from the other
PM systems (§3.2).

9 Conclusion
This paper presentsOdinfs, a file system that maximizes PM
performance in NUMA machines. A key novelty in Odinfs
lies in decoupling the PM data accesses from the application
threads by offloading them to a set of delegation threads
in each NUMA node. Such decoupling simultaneously al-
lows Odinfs to preserve the maximum PM performance
with a single NUMA node, efficiently utilize PM in remote
NUMA nodes, and service system calls by accessing PM
in all NUMA nodes in parallel, thus maximizing the PM
performance. Odinfs further includes fine-grained synchro-
nization control mechanisms to scale all typical file system
data operations. Extensive evaluation shows that Odinfs
constantly outperforms existing PM file systems by several
times to orders of magnitude.
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