
Taming Hot Bloat Under Virtualization with HugeScope

Chuandong Li1 2 Sai Sha1 3 Yangqing Zeng1 Xiran Yang1

Yingwei Luo 1 2 Xiaolin Wang1 2 Zhenlin Wang4 Diyu Zhou1 5

1 National Key Laboratory for Multimedia Information Processing, School of CS, Peking University
2 Zhongguancun Laboratory, 3 Beijing Huawei Digital Technologies, 4 Michigan Tech, 5 EPFL

Abstract

Huge pages are effective in reducing the address translation
overhead under virtualization. However, huge pages suffer
from the hot bloat problem, where accesses to a huge page
are skewed towards a few base pages (i.e., 4KB page), making
the hypervisor (mistakenly) classify the whole huge page
as hot. Hot bloat renders several critical techniques used
in virtualization ineffective, including tiered memory and
page sharing. Prior work addressing hot bloat either requires
hardware modification or targets a specific scenario and is
not applicable to a hypervisor.

This paper presents HugeScope, a lightweight, effec-
tive and generic system that addresses the hot bloat prob-
lem under virtualization based on commodity hardware.
HugeScope includes an efficient and precise page tracking
mechanism, leveraging the other level of indirect memory
translation in the hypervisor. HugeScope provides a generic
framework to support page splitting and coalescing poli-
cies, considering the memory pressure, as well as the re-
cency, frequency, and skewness of page access. Moreover,
HugeScope is general and modular, thereby can be easily
applied to various scenarios concerning hot bloat, including
tiered memory management (HS-TMM) and page sharing
(HS-Share). Evaluation shows that HugeScope incurs less
than 4% overhead, and by addressing hot bloat, HS-TMM
improves performance by up to 61% over vTMM while HS-
Share saves 41% more memory than Ingens while offering
comparable performance.

1 Introduction

As the memory footprint of virtual machines (VMs) in-
creases [15, 22], huge pages are employed to alleviate the
pressure of TLB [12, 14, 24, 33, 34, 37]. This brings significant
performance improvements (11% - 53% across a wide range
of benchmarks as reported in prior work [24]) due to two
reasons: (1) it increases the TLB coverage, reducing the TLB
miss rate; (2) it reduces the overhead of page walking.

Unfortunately, as discovered by prior reasearch [4, 7, 26],
huge pages lead to the hot bloat problem, where accesses to
a huge page are skewed toward a few base pages (i.e., 4KB
page). We refer to such huge pages as unbalanced huge pages.
With the conventional approaches to track memory accesses,
hot bloat misleads the hypervisor to believe the whole huge
page is hot, thereby making suboptimal decisions.

Several critical techniques in virtualization, such as tiered
memory management [2, 35, 39, 46] and page sharing [13],
must carefully tackle hot bloat to be effective. Our evaluation
reveals that hot bloat causes performance degradation of
tiered memory management system up to 50% since cold
base pages in unbalanced huge pages occupy the precious
fast memory (§2.2). Furthermore, hot bloat causes the current
huge page sharing mechanism to fail to resolve the tradeoff
between memory saving and performance (§2.3),

Few prior systems focus on the hot bloat problem, and
those that do have various limitations (§2.5). In particular,
in virtualized environments on commodity hardware, no
previous work can accurately track memory accesses within
a huge page at a reasonable cost. This limitation prevents
the hypervisor from identifying huge pages with skewed
accesses effectively, thereby hindering the ability to address
the hot bloat problem.

To address hot bloat, we performed an extensive evalua-
tion of the relevant systems. Our evaluation reveals two new
findings: (i) page sharing systems can make a better tradeoff
between performance and memory saving by considering
hot bloat; (ii) sampling access to a small portion of huge
pages, as used by prior work [2], is highly inaccurate.

We present HugeScope, an effective, lightweight,
generic, and modular solution to the hot bloat problem
in a hypervisor without requiring guest OS and hardware
modifications. Our key observation behind HugeScope is to
exploit the other level of address indirection brought by virtu-
alization. Specifically, the current hypervisor rarely modifies
a VM’s extended page table (EPT) entry after the VM has
booted up. This enables HugeScope to bypass most (94%)
of the overhead incurred by page splitting and coalescing,

USENIX Association 2024 USENIX Annual Technical Conference 999

simply by splitting the page table to enable memory access
tracking at the base page granularity.

HugeScope proposes a comprehensive page splitting/ co-
alescing policy for hot bloat. To choose page candidates
for splitting/coalescing, HugeScope carefully considers i)
the condition to trigger page splitting/coalescing and ii) the
recency, frequency, and skewness of memory access. This
policy makes HugeScope much more effective than existing
mechanisms.

Finally, we design HugeScope to be a general and modular
solution for hot bloat, exposing a set of flexible interfaces.
We integrate HugeScope into a tiered memory management
system (HS-TMM) and a page sharing system (HS-Share).
Our evaluation shows that HugeScope incurs less than 4%
overhead, and by addressing hot bloat, HS-TMM improves
performance by up to 61% while HS-Share saves 41% more
memory while offering comparable performance.

In summary, we make the following contributions:
• Analysis. Our analysis reveals new findings: (i) page

sharing system should consider hot bloat to be effective;
(ii) access sampling approach is highly ineffective.

• HugeScope. We propose HugeScope, an effective
framework for hot bloat under virtualization.

• HS-TMM and HS-Share. Using HugeScope, we
build a tiered memory management system (HS-TMM)
and a page sharing system (HS-Share) to address hot
bloat.

2 Background and Motivation

This section discusses the hot bloat phenomenon (§2.1), its
impact on two important techniques: tiered memory manage-
ment (§2.2) and page sharing (§2.3), a motivation for tackling
hot bloat within a hypervisor (§2.4), and finally explains why
existing techniques are insufficient (§2.5).

2.1 The hot bloat phenomenon

For many workloads, during a period of its execution, ac-
cess to base pages (i.e., 4KB pages) of a huge page are highly
skewed [4, 7, 26, 44]; some base pages are frequently accessed,
while others are rarely accessed or not at all. To our knowl-
edge, PRISM [4] includes the most extensive study to date
on this phenomenon. For a set of 35 benchmarks including
a complete set of PARSEC, SPEC, three GPU benchmarks,
and several server benchmarks, 69% exhibits such access
skewness, demonstrating its wide existence.

Prior work defines this phenomenon with different terms,
such as “poor page metadata fidelity” [4], “hotness fragmen-
tation” [7]. We refer to this phenomenon as “hot bloat” to
capture its essential detrimental effects on systems that rely
on memory access information to make decisions; the sys-
tems will mistakenly classify the whole huge page as hot
due to skewed access to a few base pages.

Hot bloat vs. memory bloat. In addition to the reason
mentioned above, we call this phenomenon “hot bloat” to
emphasize both the similarity and the difference between it
and memory bloat [24, 32] caused by huge pages.

Memory bloat is the internal fragmentation caused by
huge pages, where the huge page uses 2MB of memory even
if many 4KB pages within it are freed. In essence, hot bloat
reflects the skewness of memory accesses, resulting in an
overestimation of the hot page set, while memory bloat re-
flects the skewness of memory utilization, resulting in an
overestimation of footprint.

2.2 Hot bloat with Tiered Memory Systems

Tiered memory systems [2, 21, 29, 35, 39, 46] scale up the
precious memory capacity. To maximize performance, fre-
quently accessed pages are placed in fast memory (e.g.,
DRAM), while infrequently accessed pages go to slow mem-
ory (e.g., NVM [3, 25, 43]).

Prior studies [26, 44] have pointed out that hot bloat
severely degrades the performance of tiered memory sys-
tems. This is because, for a huge page with skewed accesses,
the underlying system is likely to classify the huge page as
a hot one, thereby moving it to the fast memory. However,
in such a case, the page’s rarely accessed base pages waste
the precious fast memory space, resulting in more accesses
to the slow memory in the end.
Experimental setups. We confirm this finding in a vir-
tualization environment with vTMM [39], a recent tiered
memory system specifically designed for virtualization. We
conduct the experiments on a virtual machine allocated with
8GB DRAM as fast memory and 120GB Optane persistent
memory [18] as slow memory. To demonstrate how differ-
ent ratios of unbalanced huge pages (i.e., huge pages with
highly skewed access) may impact performance, we use a mi-
crobenchmark as the workload. (§4.5 presents the evaluation
of real-world applications.) The microbenchmark initially
allocates and touches 40GB of memory, but subsequently
only accesses 4GB of memory. We adjust the portion of un-
balanced huge pages by changing the distribution of the 4GB
memory. We evaluate vTMM with two setups: vTMM-Huge
and vTMM-base, where the microbenchmark is mapped with
2MB huge pages and 4KB base pages, respectively.
Results. Figure 1 shows the results. When there is no
unbalanced huge page, vTMM-Huge achieves the best per-
formance, due to the lower address translation overhead en-
abled by huge pages. However, as the portion of unbalanced
huge pages increases, vTMM-Huge’s performance quickly
degrades, due to the reason mentioned above. HS-TMM
addresses the hot bloat, achieving the best performance in
different ratios of unbalanced huge pages.

Confirmation #1. Hot bloat severely damages the

performance of a tiered memory system.

1000 2024 USENIX Annual Technical Conference USENIX Association

0% 25% 50% 75% 100%
unbalanced huge pages ratio (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No
rm

al
ize

d
pe

rfo
rm

an
ce

vTMM-Base
vTMM-Huge
HS-TMM

Figure 1: Impact of hot bloat on tiered memory systems (higher is
better).

2.3 Hot bloat with Page Sharing

Page sharing is a lightweight mechanism in a virtualization
environment to improve memory utilization. With page
sharing, a hypervisor first identifies the pages with the same
content across all the VMs and then deduplicates these pages
by mapping a single copy in memory, protected with copy-
on-write. Page sharing is widely deployed in production sys-
tems [13, 19, 36] and studied by prior research [16, 24, 34, 42].
Existing page sharingmechanisms. Prior work has stud-
ied the impact of huge pages on page sharing and reveals a
difficult trade-off between performance and memory saving.
Specifically, compared to base pages, huge pages are much
more likely to have different content, reducing the effective-
ness of page sharing [34]. As a result, one approach (Linux
Kernel Same-page Merging or KSM [13]) aggressively splits
a huge page whenever it finds a base page within the huge
page that can be deduplicated, incurring high performance
overhead. Another approach (THP Shrinker [48]) splits only
huge pages that contain zero-filled base pages. Recent sys-
tems (LPageBreak [16], Ingens [24]) splits only cold (i.e.,
infrequently accessed) huge pages for page sharing.
New observation. Our new observation is that, by con-
sidering hot bloat, the aforementioned trade-off between
performance and space-saving can be better resolved (by
splitting the unbalanced huge pages as detailed in §2.5).
Evaluation setups. We confirm our new observation by
running an intuitional microbenchmark on two VMs, respec-
tively, which in total utilize 18GB of memory (§4.6 presents
the evaluation on real-world applications). Each VM initial-
izes a buffer with the same data, but issues different access
requests. Within the buffer, each VM accesses 1) 25% of
the huge pages with high frequency and low skewness to-
wards its base pages; 2) 50% of the huge pages with high
frequency and high skewness towards their base pages; and
3) the remaining 25% of the huge pages with low frequency.

As shown in Table 1, if one does not split any huge
pages (Huge page only), the memory saving is low. As the
other extreme, Linux KSM splits most huge pages. Although
this saves the most memory, it also incurs the highest perfor-

Table 1: Page sharing results under different policies
Policy Memory saving Avg. Performance Huge page ratio

Huge page only 6MB (<1%) 1 100%
Base page only 8590MB (46.6%) 0.704 0%

KSM 8568MB (46.4%) 0.727 3%
Ingens 952MB (5.2%) 0.981 69%

THP Shrinker 152MB (0.82%) 0.994 99%
HugeScope 5448MB (29.6%) 0.943 21%

Table 2: Comparison of hot bloat solutions

System Keeping most huge
page performace

Commodity
hardware

Generic
scenario

Applicable to a
hypervisor

PRISM [4] ✓ × ✓ ✓
RainBow [44] × × × ✓

HotBox [7] × ✓ × ✓
Memtis [26] ✓ ✓ × ×
HugeScope ✓ ✓ ✓ ✓

mance overhead. Ingens and THP Shrinker split a few huge
pages, subsequently achieving little space saving. Consid-
ering hot bloat, our solution, HS-Share, achieves a better
trade-off between performance and memory savings.

Finding #1. Page sharing systems need to consider

the hot bloat problem.

2.4 Why tackling hot bloat in a hypervisor

We tackle the hot bloat issue at the hypervisor level because
it has a more severe impact in virtualized environments than
in native ones. In native environments, the tiered memory
system is the only scenario reported in previous studies [26,
44]. This scenario also applies to virtualized environments [2,
39]. In addition, virtualized enviroments also face hot bloat
in page sharing between VMs [24] and VM migration [31].
While there also exist process migration and page sharing
among processes in native enviroments, these technologies
are much more common and important with virtualization.

2.5 Related work

Table 2 compares HugeScope with existing solutions for
hot bloat. Among them, PRISM [4] and RainBow [44] are
architectural solutions that require hardware modifications.
HotBox [7] completely avoids the use of huge pages, and
therefore missing its performance benefits. The closest work
to HugeScope is Memtis [26]. However, Memtis tracks mem-
ory accesses using processor event-based sampling (PEBS),
which does not apply to a hypervisor (as detailed in §2.5.2).
In addition, Memtis only targets tiered memory and is not
general. It splits a huge page by evaluating whether doing so
results in better overall performance by estimating the im-
proved hit rate and the performance difference between the
fast and slow memory tiers. It is unclear how to generalize
this policy for other scenarios, such as page sharing.

2.5.1 Keys to addressing hot bloat

The key point in addressing hot bloat is, first, tracking mem-
ory access to obtain (1) the frequency and recency of mem-

USENIX Association 2024 USENIX Annual Technical Conference 1001

Table 3: Comparison of address tracking techniques

System Mechanism Lightweight Subpage Applicable to
virtualization

TPP [29] Page fault(PF) × ✓ ✓
Ingens [24] A/D bits ✓ × ✓

HeMem [35] PEBS ✓ × ×
Memtis [26] PEBS ✓ ✓ ×

Thermostat [2] Sampling PF × ✓ ✓
HugeScope Two-phase scanning ✓ ✓ ✓

ory accesses to classify hot and cold pages; and (2) access
skewness within huge pages. Based on this information,
the system can decide the base pages to coalesce into huge
pages and the huge pages to split into base pages. Next, we
explain why existing memory access tracking approaches
are insufficient (§2.5.2).

2.5.2 Memory access tracking technique

Table 3 summarizes the memory access tracking techniques.
Page table-based memory access tracking. The most
straightforward approach to tracking memory access is
through page faults [2, 23, 29]. However, handling a page
fault is expensive (and it gets more expensive in a virtualized
environment [38, 39]), so page fault-based approaches are
limited to tracking a small sample of memory accesses.

Modern hardware includes an access/dirty (A/D) bit in
each page table entry to facilitate memory access tracking.
Unfortunately, this approach [17, 24, 39] does not enable
tracking accesses to the base page within a huge page, and
thus cannot obtain access skewness information.
Processor event-based sampling. Recent systems [26,
35] use a hardware feature named processor event-based
sampling (PEBS) to track memory accesses. PEBS takes as
input a trigger condition (e.g., every 1000 LLC misses) and a
PEBS buffer, specified by a virtual address stored in a model-
specific register called IA32 DS AREA. Whenever the trigger
condition is met, PEBS refers to IA32 DS AREA to obtain
the virtual address of the PEBS buffer, writes the process ID
and the accessed virtual address to the PEBS buffer.

Unfortunately, with the current hardware, it is not possible
for a hypervisor to monitor guests using PEBS [30, 45, 47].
This limitation is because there is only one IA32 DS AREA
register per CPU, which is shared by both the VM and the
hypervisor. When the VM execution triggers the specified
condition, the hardware logs to the virtual address of the
VM (at the address stored in IA32 DS AREA) instead of the
hypervisorfis address space. This could potentially corrupt
the VM (since the VM does not expect such writes) and makes
it difficult for the hypervisor to access the results since they
reside in the VM’s address space.
Thermostat. Thermostat [2] samples a small fraction (5%)
of huge pages, splits them into base pages, tracks memory
accesses within the base pages, and coalesces them back. The
paper does not explain why choosing such a small fraction
of sampling, and we suspect this is due to the overhead of

0 250 500 750 1000 1250 1500 1750
Time (s)

8

10

12

14

Th
ro

ug
hp

ut
 (k

 o
ps

/s
)

HugeScope
Thermostat

Figure 2: Performance impact with HugeScope vs. Thermostat
(higher is better).

splitting/coalescing pages (as detailed in §3.3.1).
Sampling always leads to inaccuracies, which in turn re-

sults in systems making suboptimal decisions. To demon-
strate this, we implement the sampling approach used in
Thermostat and applied it to a tiered memory system (HS-
TMM-sampling). We compare this with another tiered mem-
ory system with accurate memory access tracking (HS-TMM).
The VM accesses a 20GB Redis database with a hotspot distri-
bution, with 8GB of fast memory, and 120GB of slow memory.

As shown in Figure 2, HS-TMM, based on accurate mem-
ory access tracking, quickly reaches peak performance. HS-
TMM-sampling reduces monitoring overhead but its inaccu-
racy leads to suboptimal page placement decisions, leading
to, on average, a performance decrease of 26%.

Finding #2. Sampling a small portion of huge pages,

as used byThermostat, is highly ineffective.

3 The HugeScope System

We presents HugeScope, a lightweight, effective, and generic
solution to the hot bloat problem under virtualization. This
section presents the design goal of HugeScope (§3.1), an
overview of HugeScope (§3.2), the design of each individual
component (§3.3, § 3.4, §3.5), and concludes with its imple-
mentation (§3.6).

3.1 Design Goals and Non-goals

We design HugeScope to meet the following design goals.
• Lightweight. HugeScope’s runtime overhead must

be minimal and must not offset the performance advan-
tages enabled by huge pages. Otherwise, HugeScope is
not useful, since one can trivially just use base pages to
resolve the hot bloat problem (as in HotBox [7]).

• Accurate and complete memory access informa-

tion for informed decision making. As demon-
strated in§ 2.5.2, HugeScope must provide accurate
and complete memory access information to enable
smart and well-informed decision-making, in determin-
ing whether to split or preserve huge pages.

1002 2024 USENIX Annual Technical Conference USENIX Association

HugeScope System
Two-phase Page Tracking

 Coarse path Fine path

Hot

Cold

 HugeScope Interfaces
Track Switch

Frequency Recency Skewness Preference

Customize Policy

Split EPT

 Page Size Policy

Hot Base Pages

Hot Bloat Page

Split

Coalesce

Page Sharing System Tiered Memory System

Other subsystems in hypervisor

Function call

Enable/Disable
tracking

Set policy

Figure 3: The overview of HugeScope.

• Generality. The design of several important mech-
anisms needs to consider hot bloat (§2.4). We aim to
design HugeScope as a one-stop solution for the hot
bloat problem; HugeScope should be general enough
to be applicable across a wide range of scenarios.

• Modularity. To enable its easy integration with other
systems, HugeScope should be an isolated and self-
contained module, and expose a set of well-defined and
flexible interfaces for interaction.

Non-goals. HugeScope is specifically designed for tackling
hot bloat. Other issues incurred by huge pages, such as ex-
ternal memory fragmentation and unfair allocation of huge
pages across different VMs [24, 32], are out of scope. As fur-
ther discussed in §3.4, HugeScope only provides mechanisms
to address hot bloat, and does not concern with particular
policies (e.g., the threshold to determine whether a page is
hot). Such policies are and, as evident in §3.6, should be
determined outside HugeScope.

3.2 Overview

Figure 3 depicts the architecture and workflow of
HugeScope. 1⃝ Initially, HugeScope enters the first phase
of memory access tracking by monitoring all system pages
without any page splitting or coalescing. 2⃝ Afterwards,
HugeScope enters the second phase, where it applies
lightweight page table splitting and coalescing to obtain the
access skewness of hot huge pages. 3⃝ Next, HugeScope ad-
dresses the hot bloat problem with a default page size policy
that considers page hotness and skewness. 4⃝ HugeScope
offers flexible and modular interfaces to facilitate seamless

Page Splitting
0

20

40

60

80

100

120

140

Ti
m

e
(µ

s)

Page Coalescing
0

50

100

150

200

250

Ti
m

e
(µ

s)

Others
TLB flush
LRU list updating

Page struct updating
Page table updating

EPT invalidation
Lock/Unlock

Figure 4: Overhead breakdown of page splitting (split huge page())
and coalescing (collapse huge page()) in KVM.

enhancements of other subsystems (e.g.tiered memory man-
agement and page sharing).

3.3 Lightweight and precise access tracking

This subsection first presents our observation regarding the
challenges (§3.3.1) and opportunities (§3.3.2) under virtualiza-
tion for access tracking. Next, we present how HugeScope
overcomes the challenges and exploits the opportunities
with a two-phase page tracking approach (§3.3.3), that is
both lightweight and precise. We conclude by discussing the
correctness of our methods (§3.3.4).

3.3.1 Challenges under virtualization

Challenges: prohibitive overhead for page splitting

and coalescing. As discussed in §2.5.2, all the existing tech-
niques for access tracking, including the PEBS-based ones,
do not work for the scenario HugeScope targets. With the
commodity hardware, HugeScope must resort to a paging-
based mechanism for access tracking.

Intuitively, to obtain the access skewness within a huge
page, one can split the huge page into base pages, and track
memory accesses to these base pages with a paging-based
mechanism. After the access tracking period ends, the base
pages can be coalesced back into a huge page to continue
enjoying the performance advantages of huge pages.

Unfortunately, as shown in Figure 4, we find that the over-
head of performing splitting and coalescing is unacceptable,
costing 145 and 240 µs, respectively. Furthermore, both op-
erations require invalidating the EPT of the VMs. This causes
expensive VM exits to rebuild EPT when these pages are ac-
cessed again (just in the near future for those active pages).

We note that the reported number already reflects an op-
timization we perform to save a large portion of the time
for page coalescing, which originally takes 665 µs. Specifi-
cally, the original page coalescing function provided by Linux
(even on the latest 6.7 version) always allocates a new huge
page and copies the content of the base pages to this new
huge page, even if the base pages are contiguous and aligned

USENIX Association 2024 USENIX Annual Technical Conference 1003

Table 4: Modifications to EPT and GPT during the whole execution
Benchmark EPT modifications GPT modifications

429.mcf 4 835
657.xz 12 11201

GAPBS-pr 2 31049
GAPBS-bc 3 30169
Graph500 4 9680

Redis 4 10435
Mongodb 2 12765

on the huge page boundary. Our optimization performs an
in-place merging whenever possible.
Overhead analysis. The overhead incurred by splitting the
page table (i.e., page table updating plus TLB flush), which is
the only required operation for tracking memory access, is
only 6.0% and 6.5% for splitting and coalescing, respectively.
Instead, most of the overhead in page splitting/coalescing
is due to modification to kernel metadata, especially the
page descriptor (i.e., page struct) and the page reclamation
structures (i.e., LRU list). Thus, a key challenge HugeScope
must overcome to enable a lightweight, precise, and base
page granularity memory access tracking, in the presence of
prohibitive page splitting/coalescing overhead.

3.3.2 Opportunities with virtualization

HugeScope is enabled by two characteristics that exist in
both Type 1 and and Type 2 hypervisors.
Opportunity #1: A hypervisor rarely accesses andmod-

ifies extended page tables. To support virtualization, in
addition to guest page tables, modern hardware provides an-
other level of address mapping (which maps guest-physical
addresses to host-physical addresses) with extended page
tables (EPTs), that are maintained by hypervisors [20]. This
additional level of address mapping introduces unique op-
portunities for tracking memory accesses.

First, after an extended page table entry (EPTE) is built, a
hypervisor rarely modifies it. This is because the guest page
tables (GPTs) absorb all page table modification requests from
applications (e.g., mapping and unmapping pages, changing
permission bits). The access of EPT will only appear in the
hypervisor management request. Table 4 shows the results
that confirm the above finding with our workloads in KVM.
We do not evaluate this on a type 1 hypervisor (e.g., Xen [5]),
but prior work reports similar findings [27].
Opportunity #2: Even if a hypervisor accesses/ modi-

fies EPTs, it always does so through a few stable inter-

faces. We inspect the latest version of the KVM and Xen
and find that 1) they access/modify EPTs through a small
number of functions (e.g., 11 in KVM). 2) This set of inter-
faces is stable. For KVM and Xen, no functions have been
added to/removed from this set for the past 9 and 7 years,
respectively.

3.3.3 Two-phase page tracking

Observing the challenges and opportunities discussed above,
following Rainbow [44], HugeScope employs a two-phase
page tracking approach, consisting of a coarse phase and a
fine phase. Unlike Raindow, HugeScope’s memory tracking
approach does not require hardware modification while is
still lightweight and accurate.
Coarse phase: classifying hot/cold pages without page

splitting and coalescing. To resolve the hot bloat problem,
one should (1) split the hot unbalanced huge pages and (2)
coalesce the base pages that have even access. Therefore, in
the initial coarse phase, HugeScope (1) obtains the access
frequency and recency of all pages (both huge pages and
base pages) (2) classifies huge pages into hot and cold. The
above requirements can be met without the expensive page
splitting and coalescing operations.

In the coarse phase, HugeScope uses the A/D bits in the
EPTEs of the pages to obtain the required information. Specif-
ically, when an iteration of memory access tracking starts,
HugeScope clears the A/D bits of the EPTEs and flushes
the TLB. When a TLB miss occurs, the hardware MMU sets
the A/D bits of the corresponding EPT entries. Upon the
completion of the iteration, HugeScope scans the A/D bits of
the PTEs to obtain the memory access tracking information.
Fine phase: obtaining access skewness of hot huge

pages with lightweight page splitting and coalescing.

In the next fine phase, thanks to the classification in the
coarse path stage, HugeScope only needs to obtain the ac-
cess skewness of hot huge pages. HugeScope splits all the
hot huge pages when the fine phase starts and coalesces
the corresponding base pages back into huge pages when
the stage ends (so that the system can continue to benefit
from the performance advantages of huge pages). To further
reduce performance overhead, HugeScope adopts a page
splitting/coalescing approach that avoids costly modifica-
tions to hypervisor metadata.

As discussed in §3.3.1, the overhead incurred by the cur-
rent page splitting/coalescing is unacceptable, due to costly
modifications to hypervisor metadata. To overcome this chal-
lenge, in the fine path stage, HugeScope only modifies the
EPT (specifically, entries in the last-level page table) of a huge
page under memory access tracking to perform both splitting
and coalescing operations, and does not perform any modi-
fications to the metadata structures. This approach causes
a temporary inconsistency between the EPT and the hyper-
visor metadata; the inconsistency occurs when HugeScope
splits the page table (at the beginning of the fine path stage)
and disappears when HugeScope coalesces the page table (at
the end of the fine path page).

This approach is effective, since a hypervisor rarely ac-
cesses and modifies EPTs (§3.3.2). As a result, in most cases,
the hypervisor will never observe such inconsistency (since it
does not access or modify EPTs). Hence, in almost all cases,

1004 2024 USENIX Annual Technical Conference USENIX Association

HugeScope does not need to employ the special fallback
mechanism to address the inconsistency.

3.3.4 Ensuring Correctness

To ensure correctness in the rare cases (where a hypervi-
sor does observe the inconsistency by accessing or modify-
ing EPTs during the address tracking period), HugeScope
leverages the observation that a hypervisor only accesses
EPTs through a few stable interfaces (§3.3.2). Therefore,
HugeScope intercepts these few functions by adding a hook
in them to detect if they access or modify EPTs that may ex-
pose the inconsistency. If so, HugeScope coalesces the page
table back to its original form, eliminating the inconsistency.
This approach minimizes the intrusion into the rest of the
hypervisor (since only a few functions are modified) and is
easy to maintain (since the interfaces are stable).

A downside of this approach is that, in the aforementioned
rare cases, HugeScope cannot track access skewness within
the hot huge pages since it can no longer be split due to
inconsistency. We do not observe that this causes an issue
in our workload (since the rare case hardly occurs). If this
is a concern, one could fix this issue by splitting the page
tables of the huge pages back to base pages again, after the
hypervisor finishes accessing the EPTs, at the cost of more
intrusive code modifications to the hypervisor.

In addition, to ensure correctness, HugeScope reuses the
page splitting/coalescing code in KVM / Linux (except that
HugeScope does not modify the kernel metadata as these
functions). The code splits or merges the page table entries
only after the new entries have been properly set up, and the
code performs an atomic memory write to make the page
table use the new entries. This ensures, e.g., the page table
walker to always see a valid entry.

Finally, we note that HugeScope does not change the
mapping between the guest physical address and the
host physical address. This, together with the aforemen-
tioned approaches to resolve metadata inconsistencies and
split/coalesce pages, ensures HugeScope operate correctly.

3.4 Page Size Policy

The page size policy for handling hot bloat must consider the
memory pressure, hotness, and skewness of huge pages. The
default policy of HugeScope fully considers these metrics
to address hot bloat, i.e., to split hot bloat huge pages. Addi-
tionally, with generality in mind, HugeScope also supports
the modification of this policy by backend subsystems (e.g.,
tiered memory management and page sharing) to fulfill a
variety of requirements (as detailed in §3.5).

When using the default policy, the backend needs to pro-
vide huge hot pages and hot page sizes (Nhot , to be deter-
mined by the backend after the coarse path), as well as the
memory hot page waterline (Nline, indicating the expected

size of hot pages by the backend). We then introduce the hot
page pressure metric (HP) to describe the degree to which
the actual size of VM’s hot pages exceeds the memory hot
page waterline. Essentially, HP represents the trade-off be-
tween the usage of huge pages and the memory pressure.
The HP is calculated as follows:

HP =

Nhot −Nline initialization
HP−PSRi ×Shuge splitting huge page i
HP+PSRi ×Shuge coalescing huge region i

Following [7], we use PSR to quantify the access skewness
within a huge page. PSR is defined as follows: PSR = 1− Nb

Nt
,

where Nb is the number of base pages accessed, and Nt is the
total number of base pages (Nt is 512 for 2MB huge pages).
PSRi denotes the PSR of the huge page i and Shuge represents
the size of a huge page.

After fine path monitoring, HP is initialized. The HP
adjusts along with page splitting and coalescing. Specifically,
page splitting can expose the cold base page regions within a
hot huge page. As those cold pages are no longer treated as
hot, the HP should be decreased. In contrast, page coalescing
may cause the cold base pages to coalesce into a hot huge
page, and the HP should be increased.

When HP > 0, a series of huge pages should be selected
to split. We prioritize splitting the pages based on the PSR,
from large to small. This is because a high PSR implies fewer
visited base page regions and, thus, lesser speedup in address
translation. When HP < 0, a series of huge page regions
should be coalesced. we prioritize coalescing pages based on
the PSR from small to large, giving priority to the huge page
region containing more accessed base pages.

3.5 Flexible and Modular Interface

As a a general solution, HugeScope is not coupled with
any specific scenario, but instead provides a flexible interface
for other memory management subsystems to call. Figure 5
shows the pseudo-code of HS-TMM (§3.6) to illustrate the
use of HugeScope interfaces.

For two-phase page tracking, HugeScope exposes switch
interfaces for both coarse and fine paths (i.e., enable/disable -
coarse/fine path). HugeScope places the access data of each
page in the heap space, and each page’s access data are
represented by a 64-bit entry (access entry). The first 32 bits
of this entry represent the dirty bit information of the page
in the last 32 cycles, and the last 32 bits represent the access
bit information of the page in the last 32 cycles. Each base
page region in a huge page also has an access entry. Thus,
for a huge page, we can obtain its recency, frequency, and
skewness information through access entries.

For the page splitting and coalescing policy, HugeScope
provides a default strategy (invoked by hs page size policy)
that can split and balance huge pages reasonably. The back-
end subsystems need to provide HugeScope with the hot

USENIX Association 2024 USENIX Annual Technical Conference 1005

1 /* vm_desc is the VM descriptor */
2 void hs_tmm(struct VM* vm_desc, int fast_mem_size,
3 int profiling_times, int coarse_path_sleeping_interval,
4 int fine_path_sleeping_interval){
5 // Coarse phase tracking
6 for(i = 0; i < profiling_times; i++){
7 // `hs_start_coarse_path` clears A/D bits for all VM pages.
8 hs_start_coarse_path(vm_desc);
9 msleep(coarse_path_sleeping_interval);

10 // `hs_end_coarse_path` checks A/D bits for all VM pages
11 // and increases a per-page counter array in vm_desc
12 hs_end_coarse_path(vm_desc);
13 }
14
15 size_t* hot_huge_pages, hot_base_pages;
16 // vTmm iterates the per-page counter array in vm_desc
17 // to obtain hot pages for huge and base pages.
18 vtmm_get_hot_pages(vm_desc, hot_base_pages, hot_huge_pages);
19
20 // `hs_start_fine_path` split EPTs for each huge page in
21 // hot_huge_pages to track accesses to their base pages
22 hs_start_fine_path(vm_desc, hot_huge_pages);
23 msleep(fine_path_sleeping_interval);
24 // `hs_end_fine_path` checks the A/D bits of each base page
25 // and increases a per-page counter array in vm_desc
26 hs_end_fine_path(vm_desc);
27
28 // Invoke the default HugeScope paging policy
29 hs_page_size_policy(vm_desc, hot_huge_pages, fast_mem_size);
30
31 // vTMM updates page placement in fast/slow memory for the VM.
32 vtmm_page_placement(vm_desc, hot_huge_pages, hot_base_pages);
33 }

Figure 5: Pseudo code of HS-TMM. All the functions starting with
’hs ’ are HugeScope interfaces.

pages and memory hot page waterline as input to this default
strategy. In addition, this interface also supports customized
strategies from the backend. The backend can specify the
candidate page set for page splitting and coalescing, which
will occur only for pages in this set.

3.6 Implementation

We implement HugeScope as a kernel module on top of
KVM [8] (and thus QEMU 3.1.0 [9]) in the 5.4.142 Linux
kernel with 2000 lines of C codes. This is the version where
vTMM [39] (a tiered memory management system previously
developed by us) is built and we implemented HugeScope
on the same version to ensure fair eveluation.

We believe that the implementation of HugeScope de-
pends little on the hypervisor and host OS versions. We have
also ported HugeScope to Qemu 7.1.0; the porting does not
require modifying any code. We also check the code of the
latest Linux (6.9) and expect little porting effort (since the
interfaces to access/modify EPTs do not change).
Access Entry Placement. HugeScope organizes the ac-
cess information of the VMs into a page table structure called
the access metadata table (AMT). HugeScope uses the host
physical address (HPA) to index the AMT, as it can directly
obtain the HPA of a page during page table scanning, avoid-
ing additional overhead and allowing multiple VMs to share
the same AMT. This implementation effectively reduces the
space overhead of the HugeScope metadata. The walking
of AMT is similar to that of a regular page table, with the

only difference being that for a huge page, we need to save
the metadata page index for its next-level base pages and
also save the AMT entry for the huge page itself. Therefore,
the PMD page for AMT occupies 8KB, and each PMD entry
includes the address index for the next level and the AMT
entry for the huge page.

Virtualization-Friendly Page Splitting and Coalescing.

HugeScope needs to split huge pages or coalesce base pages.
However, the implementation of these functionalities under
KVM / Linux is not designed for virtualized environment.
Specifically, the implementation invalidates EPT entries. As
a result, the next access to these pages causes a VM exit,
which severely damages the performance of the VMs. To min-
imize such overhead, HugeScope proposes a virtualization-
friendly page splitting and collapsing mechanism. Upon page
splitting (or coalescing), HugeScope actively refills the EPT
of base pages (or the huge page) after changes are performed
to the VM process page table.

Tiered memory management with HugeScope (HS-

TMM). vTMM is a virtualization-customized tied memory
management system, which efficiently utilizes fast memory
through page tracking, page classification, and page migra-
tion. However, vTMM does not address the hot bloat problem
and is only applicable to either base page systems or huge
page systems. Following vTMM, we implemented HS-TMM
using the interfaces provided by HugeScope. In the page
tracking phase, HS-TMM directly uses the coarse path in-
terface for page table tracking. After page classification,
HS-TMM uses the fine path interface to monitor hot huge
pages at the base page granularity. Then, HS-TMM employs
HugeScope’s default policy and sets the memory hot page
waterline to the size of fast memory, ensuring that hot bloat
will not cause hot pages to be placed in slow memory and
maximizing the proportion of huge pages in fast memory.
HS-TMM then performs the correct page placement, placing
hot pages in fast memory and cold pages in slow memory.

Page Sharing with HugeScope (HS-Share). Ingens at-
tempts to balance the usage of huge pages and page sharing
by distinguishing between frequently and infrequently ac-
cessed huge pages based on their A/D bits. Only infrequently
accessed huge pages are split for page sharing. Inspired by
Ingens, we implemented HS-Share using the interfaces pro-
vided by HugeScope. Similarly to HS-TMM, HS-Share first
obtains the hotness and skewness information of the huge
pages through the coarse path and fine path interfaces of
HugeScope. However, the default policy in HugeScope (that
is, splitting all unbalanced huge pages) needs to be slightly
modified. This is because, in page sharing, both cold huge
pages with mergeable areas and unbalanced huge pages need
to be considered as splitting candidates. To customize the
split policy, HS-Share only needs to disable the default pol-
icy and set the candidate page set through the policy interface
provided by HugeScope.

1006 2024 USENIX Annual Technical Conference USENIX Association

Table 5: Performance improvement of huge pages to base pages in
virtualization

Benchmarks Local DRAM NVM
429.mcf 10.50% 7.88%
657.xz 15.50% 5.75%

GUPS-bc 102.06% 10.42%
GUPS-pr 227.06% 9.36%

Redis 11.94% 5.54%
MongoDB 9.73% 4.92%
Graph500 19.35% 7.29%

4 Evaluation

Our evaluation answers the following questions:
• What is the cost and accuracy of the two-phase page

tracking used by HugeScope? (§4.2)
• How much performance can improve with

virtualization-friendly page splitting/ coalescing? (§4.3)
• How much performance improvement is brought by

each HugeScope component? (§4.4)
• What improvement can be achieved using HugeScope

in scenarios such as tiered memory management and
page sharing? (§4.5, §4.6)

4.1 Experimental Setup

We evaluate HugeScope on a dual-socket Intel Cascade Lake-
SP server with 24 cores/48 threads per socket at 2.2GHz. The
VMs are configured with 8 cores. The host and guest OS
run Ubuntu 18.04 with Linux kernel 5.4.142. We use local
DRAM as fast memory and Intel Optane DC PMem as slow
memory for the tiered memory system. We choose bench-
marks with varying access patterns, including: 429.mcf from
SPEC CPU 2006 [41] and 657.xz from SPEC CPU 2017 [40];
Graph 500 [11] running SSSP and BFS algorithms on a graph
containing 225 points, with a 20GB footprint; GAPBS [6] run-
ning BC and PR algorithms on a Kronecker graph with 225

points and a 20GB footprint; Redis [28] and MongoDB [1]
with YCSB [10] test suites, both configured with 20GB data, a
4KB value size and operations follow the hotspot distribution
with a 1:1 read-update ratio. Unless otherwise specified, Re-
dis and MongoDB use throughput as the performance metric.
As shown in Table 5, all the evaluated benchmarks benefit
from huge pages.

4.2 Page Tracking Efficiency

In this section, we compare HugeScope’s page tracking
mechanism with with the methods mentioned in 2.5.2. Split
scan refers to using the Linux interface to split and coalesce
pages. Sampling scan refers to sampling 5% of huge pages for
splitting to track each iteration as Thermostat. For the page
table scan-based methods, we set the interval for clearing
A/D bits to once per second. Zero scan just scanning zero
base pages as HawkEye. PEBS controls the frequency of hard-
ware counter-overflow by adjusting the sampling period. We

429.mcf 657.xz Graph500 Redis geomean
0

5

10

15

20

25

30

Pe
rfo

rm
an

ce
 sl

ow
do

wn
(%

)

split scan
zero scan

sampling scan
PEBS-5000

PEBS-500
PEBS-50

HugeScope

Figure 6: Performance slowdown of different monitors (lower is
better).

0 25 50 75 100
Huge Page Ratio (%)

0

5

Pe
rfo

rm
an

ce
 S

lo
wd

ow
n(

%
)

Figure 7: Performance slow-
down of monitoring Redis un-
der different huge page ratios

VM1: Redis VM2: Graph500
0

1

3

Pe
rfo

rm
an

ce
 S

lo
wd

ow
n(

%
)

Figure 8: Performance slow-
down of monitoring two co-
run VMs.

choose 50 (PEBS-50), 500 (PEBS-500) and 5000 (PEBS-5000)
for testing. These values are selected to comprehensively
illustrate the trade-off between the precision and the over-
head of PEBS. We chose the sampling period being 50 to
show that, with our workloads, even such a small sampling
period is much less accurate than HugeScope. We do not
further increase the sampling period beyond 5000 since a
frequency of 5000 incurs less than 1% overhead. Since PEBS
is not supported by virtualization, we test it in native mode.

4.2.1 Page Monitoring Overhead

To assess the performance impact caused by these monitor-
ing mechanisms, we enabled monitoring for all benchmarks
for 10 out of 20 seconds.

The results are shown in Figure 6. Due to space limita-
tions, the unshown results are similar to those in the figure.
The split scan incurs a much higher overhead due to costly
splitting and coalescing operations. The sampling scan has
an average performance penalty of 1.78% as only 5% of the
huge pages are selected for monitoring. The overhead of
zero page scanning is only 1.45%, as most pages are non-zero
pages. The average performance overheads of PEBS-5000,
PEBS-500, and PEBS-50 are 0.7%, 9.5%, and 20.7%, respec-
tively. As precision increases, the overhead also increases.
HugeScope tracks at the granularity of the base page with
an average cost of 3.04%.

We then show the performance of HugeScope with re-

USENIX Association 2024 USENIX Annual Technical Conference 1007

2 4 8 16
Working set size(GB)

0

10

20

Pe
rfo

rm
an

ce
 sl

ow
do

wn
(%

)

Linux splitting/coalescing HugeScope fine path

Figure 9: Performance slowdown caused by Linux split-
ting/coalescing and HugeScope fine path (lower is better).

spect to the number of huge pages and different numbers of
VMs. Figure 7 shows the performance degradation caused by
using HugeScope to monitor Redis with different huge page
ratios. When there are less huge pages, monitoring will cause
more overhead. This is because more PTEs of base pages
need to be scanned. Figure 8 shows the performance slow-
down of monitoring two co-run VMs. Two VM instances run
Redis and Graph500 respectively, and HugeScope monitors
them at the same time. The results show that HugeScope
does not cause more overhead in multi-VM scenarios.

We then delve further into the performance benefits
brought about by the fine path of HugeScope. We com-
pare the fine path with the traditional Linux interfaces. To
illustrate the relationship between the overhead and the num-
ber of pages, we used a sequential access microbenchmark
with a 1:1 read/write ratio and varied the WSS from 2 GB to
16 GB. We activate the Linux page splitting/coalescing and
HugeScope fine path every 10 out of 20 seconds. As shown
in Figure 9, the performance degradation of traditional in-
terfaces is proportional to WSS. A 16GB program causes a
performance degradation of up to 25.39%. In contrast, the
HugeScope fine path performs only a light change in EPT,
with a performance overhead of less than 1.5%.

At the beginning and end of the fine-path monitoring,
TLB shootdowns are performed due to page table entries
modification. Our experiments show that the performance
impact is almost negligible for all applications (<0.5%).

4.2.2 Page Monitoring Accuracy

To assess the tracking accuracy, we use database benchmarks
as workloads due to their predictable RSS. We test real-time
monitoring of the workload. Real-time monitoring involves
monitoring every 10 out of 20 seconds and taking the average
value of the memory accessed. We only show the result of
Redis in Figure 10. The result of MongoDB is similar to
Redis. Base scan and huge scan, respectively, refer to the
system building only base page or huge page mappings.

Due to hot bloat, the results of the huge scan imply that
most memory is accessed, which is inaccurate. The sampling
scan also suffers from hot bloat, as it only demotes a small

Hug
e s

can

Base
 sc

an

Sp
lit

sca
n

Zero
 sc

an

Sa
mplin

g s
can

PE
BS-5

00
0

PE
BS-5

00

PE
BS-5

0

Hug
eS

cop
e

5

10

15

20

M
em

or
y

siz
e(

GB
)

Figure 10: Real-time monitoring results on Redis. The blue hori-
zontal line is the exact memory access size.

2 4 8 16
Working set size(GB)

0

5

10

15

20

25

Pe
rfo

rm
an

ce
 S

lo
wd

ow
n(

%
)

Sequencial read

2 4 8 16
Working set size(GB)

0

5

10

15

20

Sequencial write

Linux splitting/coalescing HugeScope splitting/coalescing

Figure 11: Performance slowdown due to page splitting/coalescing
(lower is better).

partition of huge pages for monitoring. In contrast, the split
scan and HugeScope can accurately identify the accessed
memory regions as the base scan. PEBS always has a gap with
the baseline because it is based on sampling. The zero scan
only counts zero pages, which does not provide an accurate
reflection of the VM’s exact memory access behavior.

4.3 Page Splitting and Coalescing

HugeScope uses a virtualization-friendly page splitting and
coalescing mechanism after policy decision which proac-
tively refills EPT entries to reduce the number of VM exits
(§3.6). To illustrate the relationship between the overhead
and the number of pages, we use a sequential read micro-
benchmark with varying WSS. We split and collapse all pages
of the workload every 20s. As shown in Figure 11, Linux
interfaces cause a slowdown of up to 25.39% for the 16GB pro-
gram. With refilling, it is reduced to 10.26%. The performance
slowdown is proportional to the WSS, as increasing the WSS
results in more VM exits and more page states to modify.
Table 6 shows that the VM exits caused by the virtualization-
friendly page splitting and collapsing of HugeScope are
much lower than those caused by Linux interfaces.

The refill operation incurs less than 1% overhead for a
16GB program, but insteain turn d signficantly improves
overall performance, as discussed above. The refill overhead
increases linearly with the memory size since the work per-
formed for each page (i.e., refilling an EPT entry) does not
increase with memory size.

1008 2024 USENIX Annual Technical Conference USENIX Association

Table 6: VM exits caused by page splitting and coalescing

WSS(GB) Linux HugeScope
Read Write Read Write

2 545715 547324 1197 825
4 1093350 1083551 1215 943
8 2185320 2163738 966 977
16 4355483 4285644 915 915

Redis

9

11

13

15

Th
ro

ug
ht

pu
t (

k
op

s/
s)

MongoDB

11

15

19

23

vTMM-Huge
+Thermostat
+Split scan

+Fixed threshold
+Linux split/collapse
HS_TMM

DRAM only
vTMM-Base

Figure 12: Ablation study of HugeScope (higher is better).

4.4 Ablation Study

Figure 12 shows a breakdown of the performance gains of
three components (i.e., two-phase page tracking, page size
policy, and virtualization-friendly page splitting and coalesc-
ing) of HugeScope. We replace them with split scanning,
Thermostat (sampling scanning), a fixed threshold policy, and
Linux splitting/coalescing interfaces separately. We show the
results in a tiered memory system (HS-TMM) and use vTMM-
Huge as the baseline. DRAM only indicates that the VM’s
memory consists entirely of fast memory to demonstrate opti-
mal performance metrics. All other configurations use 12GB
(60% of WSS) and 38Gb of fast and slow memory, respectively.

HS-TMM outperforms +Thermostat as the sampling scan-
ning cannot obtain accurate real-time access information,
leading to the hypervisor placing infrequently accessed
base page regions into fast memory. HS-TMM outperforms
+Split scanning as a fine path reduces VM exits and metadata
modifying overheads to a minimum. +Fixed threshold selects
a fixed threshold, where a huge page ensures that more
than 256 base page regions are accessed, but it cannot
achieve the optimal tradeoff between address translation
overhead and huge page utilization. +Linux split/collapse
produces VM-exits linearly correlated to the number of
pages, resulting in performance degradation. HS-TMM
results in minimum VM exits and achieving performances
matching those of DRAM only.

4.5 Case Study 1: Tiered Memory

For the tiered memory system, we compare HS-TMM with
the state of the art, vTMM, of pure huge and base page man-
agement (vTMM-Huge and vTMM-Base). We run a VM with
a total memory of 50GB, which exceeds the RSS of all bench-
marks. We employ the same configuration as vTMM, that is,
monitoring and adjustment of pages every 60 seconds. We
adjust the size of the fast memory to demonstrate perfor-

0.4

0.6

0.8

1

1.2

1.4

No
rm

al
ize

d
pe

rfo
rm

an
ce

Redis MongoDB Graph500

20% 40% 60% 80%
Fast memory ratio (%)

0.4

0.6

0.8

1

1.2

1.4

No
rm

al
ize

d
pe

rfo
rm

an
ce

657.xz

20% 40% 60% 80%
Fast memory ratio (%)

GAPBS-BC

20% 40% 60% 80%
Fast memory ratio (%)

0.5

1.0

1.5

2.0

2.5

3
GAPBS-PR

vTMM-Base vTMM-Huge HS-TMM

Figure 13: The normalized performance of different fast memory
ratios for vTMM-Base, vTMM-Huge, andHS-TMM (higher is better).
The x-axis represents the ratio of fast memory to the WSS.

mance improvement under different memory pressures.
As shown in Figure 13, Redis and MongoDB suffer seri-

ous hot bloat, so the performance of vTMM-Huge is lower
than that of vTMM-Base. HS-TMM achieves optimal per-
formance, as it addresses hot bloat while retaining balanced
huge pages for faster address translation. Graph500 and
657.xz are slightly affected by hot bloat. The performance
of vTMM-Huge is the same as that of HS-TMM when the
DRAM ratio exceeded 60% since the fast memory can accom-
modate all hot pages. hot bloat occurs when the DRAM ratio
is less than 40%. HS-TMM achieves the best performance.
vTMM-Huge offers performance improvement because the
address translation overhead overcomes the fast memory uti-
lization. For GAPBS-BC, HS-TMM outperforms vTMM-Huge
when the fast memory is more than 60%, and is the same as
vTMM-Huge when the fast memory is less than 40%. This is
because the most hot huge pages are balanced huge pages.
When increasing fast memory, an unbalanced huge page
has the opportunity to harm the utilization of fast memory.
GAPBS-PR always has no hot bloat, so the performance of
HS-TMM is close to that of vTMM-Huge.

Figure 14 shows the latency metric of Redis. Same as
throughput metric, HS-TMM consistently achieves the best
average latency across all memory configurations.

4.6 Case Study 2: Page Sharing System

To evaluate the efficiency of the sharing system, we perform
experiments on three VMs that run database benchmarks,
collectively utilizing 60 GB of memory, as shown in Table 7.
Initially, all Redis instances store the same content, but we
feed them with different requests. For HS-Share and Ingens,
we set the frequency of page monitoring and page classifica-

USENIX Association 2024 USENIX Annual Technical Conference 1009

20% 40% 60% 80%
Fast memory ratio (%)

0

20

40

60

80

100

120

140

La
te

nc
y(

us
)

Redis READ

20% 40% 60% 80%
Fast memory ratio (%)

0

10

20

30

40

50

60
Redis UPDATE

vTMM-Huge vTMM-Base HS-TMM

Figure 14: Latency Comparison for Redis with a 1:1 READ and
UPDATE Ratio (lower is better). The x-axis represents the ratio of
fast memory to the WSS.

Table 7: Memory savings and performance of Redis
Policy Memory saving Avg. Performance Huge page ratio

Huge page Only 321MB (0.52%) 1 100%
Base page Only 28916MB (47.1%) 0.889 0%

KSM 28742MB (46.8%) 0.902 4%
Ingens 785MB (1.28%) 0.990 98%

THP Shrinker 384MB (0.56%) 0.986 96%
HS-Share 25981MB (42.3%) 0.964 25%

tion to 10 seconds every 30 seconds. We record the maximum
shared memory size for each method while also measuring
the average database throughput after enabling each shared
memory mechanism. Huge page share can hardly share
memory but has the highest performance because none of
the huge pages is demoted to share. Linux KSM can share all
base pages with identical content, saving 46.8% of total mem-
ory, but all three VMs have a ∼10% performance penalty.
Ingens suffers from hot bloat and only saves 1.28% of mem-
ory. THP Shrinker can hardly share zero pages, indicating
that the running application rarely initializes the data to zero
and then no longer accesses it. HS-Share achieves a better
trade-off between address translation overhead and memory
savings, and ends up sharing 42.3% of the memory, with an
average performance loss of 3.6%.

5 Discussion

PEBS vs. HugeScope. While the PEBS issue discussed in
§2.5.2 is fixable, it is difficult to predict when/if the hardware
vendor will fix it. Furthermore, performing the fix would be
non-trivial given the complexity of hardware virtualization
support and performance monitoring mechanisms.

In addition, with our workloads, our experience suggests
that the two-phase mechanism works better than PEBS. We
report the overhead (§4.2.1) and accuracy (§4.2.2) of using
PEBS to track base pages on Redis (in a native environment).
We found that even with a sampling period of 50, PEBS is
much less accurate than HugeScope (Figure 10), and it incurs
an overhead of 20.7% (vs 3.04% with HugeScope)
Limitations. When the physical memory is insufficient,
the hypervisor uses swapping and ballooning to reclaim
memory from VMs. These techniques involve modifications

to the EPT of the VM. The activation of the fine path can
potentially cause many inconsistencies in such scenarios.
However, our mechanism aims to enhance overall memory
utilization to obviate the need for costly swapping and bal-
looning operations. So in cases where the physical memory
remains insufficient and swapping and ballooning are immi-
nent, we just selectively filter pages for management, and
focus only monitor the pages not being swapped out.

6 Conclusion

This paper presents HugeScope, a lightweight, effective,
generic, and modular system to manage huge pages to ad-
dress hot bloat in a hypervisor. A key insight in our design
is to exploit the other level of address indirection brought by
virtualization. This level of address indirection makes EPT
highly stable, thereby enabling HugeScope. Specifically,
HugeScope uses two-phase page tracking to achieve fine-
grained access monitoring and splitting/coalescing pages
based on memory pressure as well as recency, frequency and
skewness of memory accesses. HugeScope provides flexible
interfaces and we adopt it on a tiered memory management
system (HS-TMM) and page sharing system (HS-Share).
Our evaluation shows that HugeScope incurs less than 4%
overhead, and By addressing hot bloat, HS-TMM improves
performance by up to 61% over vTMM while HS-Share saves
41% more memory than Ingens while offering comparable
performance. Our artifact is publicly available at https:
//github.com/TELOS-syslab/hugescope-atc24-ae.

Our experience additionally reveals two findings that
could apply beyond hot bloat. The first is the mechanism to
efficiently split/merge the page table entries EPT with incon-
sistency resolution. We envision that future research could
benefit from this technique in solving other problems that
involve huge pages in a virtualized scenario. The second is
the observation or confirmation that the interfaces to access
EPT are stable. This provides the basis for future work to
fihookfi on these interfaces to solve problems.

Acknowledgment

We thank the anonymous reviewers for their insightful and
constructive comments. The research is supported in part by
the National Key R&D Program of China under Grant No.
2022YFB4500701, and by the National Science Foundation
of China (Nos. 62032008, 62032001,62372011). Diyu Zhou is
the corresponding author.

1010 2024 USENIX Annual Technical Conference USENIX Association

References

[1] M. administration documentation. Mongodb. https://www.

mongodb.com/, 2023.
[2] N. Agarwal and T. F. Wenisch. Thermostat: Application-transparent

page management for two-tiered main memory. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 631–644, 2017.

[3] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D. Lottis,
K. Moon, X. Luo, E. Chen, A. Ong, et al. Spin-transfer torque mag-
netic random access memory (stt-mram). ACM Journal on Emerging
Technologies in Computing Systems (JETC), 9(2):1–35, 2013.

[4] R. Ausavarungnirun, T. Merrifield, J. Gandhi, and C. J. Rossbach.
PRISM: architectural support for variable-granularity memory meta-
data. In V. Sarkar and H. Kim, editors, PACT ’20: International
Conference on Parallel Architectures and Compilation Techniques, Vir-
tual Event, GA, USA, October 3-7, 2020, pages 441–454. ACM, 2020.
doi: 10.1145/3410463.3414630. URL https://doi.org/10.1145/
3410463.3414630.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
M. L. Scott and L. L. Peterson, editors, Proceedings of the 19th ACM
Symposium on Operating Systems Principles 2003, SOSP 2003, Bolton
Landing, NY, USA, October 19-22, 2003, pages 164–177. ACM, 2003. doi:
10.1145/945445.945462. URL https://doi.org/10.1145/945445.
945462.

[6] S. Beamer, K. Asanovi, and D. Patterson. The gap benchmark suite.
arXiv e-prints, 2015. http://arxiv.org/abs/1508.03619.

[7] S. Bergman, P. Faldu, B. Grot, L. Vilanova, and M. Silberstein. Reconsid-
ering OS memory optimizations in the presence of disaggregated mem-
ory. In M. Lippautz and D. Chisnall, editors, ISMM ’22: ACM SIGPLAN
International Symposium on Memory Management, San Diego, CA, USA,
14 June 2022, pages 1–14. ACM, 2022. doi: 10.1145/3520263.3534650.
URL https://doi.org/10.1145/3520263.3534650.

[8] K. community. Kernel virtual machine. https://www.linux-
kvm.org/page/Main_Page, 2023.

[9] Q. community. Qemu. https://www.qemu.org/, 2023.
[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

Benchmarking cloud serving systems with ycsb. In Proceedings of the
1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis,
Indiana, USA, June 10-11, 2010, 2010.

[11] G. developers. Graph500. http://graph500.org/, 2023.
[12] L. developers. Transparent hugepage support. https://www.kernel.

org/doc/Documentation/admin-guide/mm/transhuge.rst,
2023.

[13] L. developers. Kernel samepage merging. https://www.kernel.
org/doc/Documentation/admin-guide/mm/ksm.rst, 2023.

[14] Y. Du, M. Zhou, B. R. Childers, D. Mossé, and R. G. Melhem. Sup-
porting superpages in non-contiguous physical memory. In 21st IEEE
International Symposium on High Performance Computer Architecture,
HPCA 2015, Burlingame, CA, USA, February 7-11, 2015, pages 223–234.
IEEE Computer Society, 2015. doi: 10.1109/HPCA.2015.7056035. URL
https://doi.org/10.1109/HPCA.2015.7056035.

[15] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi. Clearing the
clouds: A study of emerging scale-out workloads on modern hardware.
SIGARCH Comput. Archit. News, 40(1):37–48, 2012.

[16] F. Guo, S. Kim, Y. Baskakov, and I. Banerjee. Proactively breaking
large pages to improve memory overcommitment performance in
vmware esxi. In A. Gavrilovska, A. D. Brown, and B. Steensgaard,
editors, Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, Istanbul, Turkey, March
14-15, 2015, pages 39–51. ACM, 2015. doi: 10.1145/2731186.2731187.

URL https://doi.org/10.1145/2731186.2731187.
[17] T. Hirofuchi and R. Takano. Raminate: Hypervisor-based virtual-

ization for hybrid main memory systems. In Proceedings of the Sev-
enth ACM Symposium on Cloud Computing, SoCC ’16, pages 112–
125, New York, NY, USA, 2016. Association for Computing Machin-
ery. ISBN 9781450345255. doi: 10.1145/2987550.2987570. URL
https://doi.org/10.1145/2987550.2987570.

[18] I. Inc. Intel optaneffl persistent memory. https://www.

intel.com/content/www/us/en/products/docs/memory-

storage/optane-persistent-memory/overview.html, 2023.
[19] Q. Inc. Using linux as hypervisor with kvm. https://indico.cern.

ch/event/39755/attachments/797208/1092716/slides.pdf,
2023.

[20] Intel-Developers. Intel extended page table. https:

//www.intel.com.au/content/www/au/en/architecture-

and-technology/64-ia-32-architectures-software-

developer-vol-1-manual.html, 2023.
[21] S. Kannan, A. Gavrilovska, V. Gupta, and K. Schwan. Heteroos: OS

design for heterogeneous memory management in datacenter. In
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ISCA 2017, Toronto, ON, Canada, June 24-28, 2017, pages
521–534. ACM, 2017. URL https://dl.acm.org/citation.cfm?
id=3080245.

[22] K. Keeton. The machine: An architecture for memory-centric comput-
ing. In Proceedings of the 5th International Workshop on Runtime and
Operating Systems for Supercomputers, ROSS ’15, New York, NY, USA,
2015. Association for Computing Machinery. ISBN 9781450336062.
doi: 10.1145/2768405.2768406. URL https://doi.org/10.1145/
2768405.2768406.

[23] J. Kim, W. Choe, and J. Ahn. Exploring the design space of page
management for multi-tiered memory systems. In I. Calciu and
G. Kuenning, editors, 2021 USENIX Annual Technical Conference,
USENIX ATC 2021, July 14-16, 2021, pages 715–728. USENIX Associ-
ation, 2021. URL https://www.usenix.org/conference/atc21/
presentation/kim-jonghyeon.

[24] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel. Coordinated
and efficient huge page management with ingens. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’16, pages 705–721, USA, 2016. USENIX Association.
ISBN 9781931971331.

[25] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change
memory as a scalable dram alternative. In Proceedings of the 36th
annual international symposium on Computer architecture, pages 2–13,
2009.

[26] T. Lee, S. K. Monga, C. Min, and Y. I. Eom. MEMTIS: efficient
memory tiering with dynamic page classification and page size de-
termination. In J. Flinn, M. I. Seltzer, P. Druschel, A. Kaufmann,
and J. Mace, editors, Proceedings of the 29th Symposium on Operat-
ing Systems Principles, SOSP 2023, Koblenz, Germany, October 23-26,
2023, pages 17–34. ACM, 2023. doi: 10.1145/3600006.3613167. URL
https://doi.org/10.1145/3600006.3613167.

[27] T. K. Lengyel. Stealthy monitoring with xen altp2m. https:

//xenproject.org/2016/04/13/stealthy-monitoring-with-

xen-altp2m/, 2016.
[28] R. Ltd. Redis. https://redis.io/, 2023.
[29] H. A. Maruf, H. Wang, A. Dhanotia, J. Weiner, N. Agarwal, P. Bhat-

tacharya, C. Petersen, M. Chowdhury, S. O. Kanaujia, and P. Chauhan.
TPP: transparent page placement for cxl-enabled tiered-memory.
In T. M. Aamodt, N. D. E. Jerger, and M. M. Swift, editors, Pro-
ceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
3, ASPLOS 2023, Vancouver, BC, Canada, March 25-29, 2023, pages
742–755. ACM, 2023. doi: 10.1145/3582016.3582063. URL https:
//doi.org/10.1145/3582016.3582063.

USENIX Association 2024 USENIX Annual Technical Conference 1011

[30] G. Natapov. disable pebs on a guest entry. https://www.uwsg.
indiana.edu/hypermail/linux/kernel/1208.1/02365.html,
2023.

[31] Y. Ozawa and T. Shinagawa. Exploiting sub-page write protection
for VM live migration. In C. A. Ardagna, C. K. Chang, E. Dami-
nai, R. Ranjan, Z. Wang, R. Ward, J. Zhang, and W. Zhang, editors,
14th IEEE International Conference on Cloud Computing, CLOUD 2021,
Chicago, IL, USA, September 5-10, 2021, pages 484–490. IEEE, 2021.
doi: 10.1109/CLOUD53861.2021.00063. URL https://doi.org/10.
1109/CLOUD53861.2021.00063.

[32] A. Panwar, S. Bansal, and K. Gopinath. Hawkeye: Efficient fine-
grained OS support for huge pages. In I. Bahar, M. Herlihy, E. Witchel,
and A. R. Lebeck, editors, Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2019, Providence, RI, USA, April 13-17,
2019, pages 347–360. ACM, 2019. doi: 10.1145/3297858.3304064. URL
https://doi.org/10.1145/3297858.3304064.

[33] C. H. Park, S. Cha, B. Kim, Y. Kwon, D. Black-Schaffer, and J. Huh.
Perforated page: Supporting fragmented memory allocation for large
pages. In 47th ACM/IEEE Annual International Symposium on Com-
puter Architecture, ISCA 2020, Valencia, Spain, May 30 - June 3, 2020,
pages 913–925. IEEE, 2020. doi: 10.1109/ISCA45697.2020.00079. URL
https://doi.org/10.1109/ISCA45697.2020.00079.

[34] B. Pham, J. Veselý, G. H. Loh, and A. Bhattacharjee. Large pages
and lightweight memory management in virtualized environments:
Can you have it both ways? In Proceedings of the 48th Inter-
national Symposium on Microarchitecture, MICRO-48, pages 1–12,
New York, NY, USA, 2015. Association for Computing Machinery.
ISBN 9781450340342. doi: 10.1145/2830772.2830773. URL https:
//doi.org/10.1145/2830772.2830773.

[35] A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Peter. Hemem: Scal-
able tiered memory management for big data applications and real
nvm. In Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, pages 392–407, 2021.

[36] S. Roesch. Kernel samepage merging (ksm) usage at meta
and future improvements. https://lpc.events/event/17/

contributions/1625/attachments/1320/2649/KSM.pdf, 2023.
[37] S. Sha, J. Hu, Y. Luo, X. Wang, and Z. Wang. Huge page friendly virtu-

alized memory management. J. Comput. Sci. Technol., 35(2):433–452,
2020. doi: 10.1007/s11390-020-9693-0. URL https://doi.org/10.
1007/s11390-020-9693-0.

[38] S. Sha, Y. Zhang, Y. Luo, X. Wang, and Z. Wang. Swift shadow paging
(SSP): no write-protection but following TLB flushing. In B. L. Titzer,
H. Xu, and I. Zhang, editors, VEE ’21: 17th ACM SIGPLAN/SIGOPS In-
ternational Conference on Virtual Execution Environments, Virtual USA,
April 16, 2021, pages 29–42. ACM, 2021. doi: 10.1145/3453933.3454012.
URL https://doi.org/10.1145/3453933.3454012.

[39] S. Sha, C. Li, Y. Luo, X. Wang, and Z. Wang. vtmm: Tiered memory
management for virtual machines. In G. A. D. Luna, L. Querzoni, A. Fe-
dorova, and D. Narayanan, editors, Proceedings of the Eighteenth Euro-
pean Conference on Computer Systems, EuroSys 2023, Rome, Italy, May
8-12, 2023, pages 283–297. ACM, 2023. doi: 10.1145/3552326.3587449.
URL https://doi.org/10.1145/3552326.3587449.

[40] Standard Performance Evaluation Corp. Spec cpu 2017 benchmarks.
http://www.spec.org/cpu2017, 2023.

[41] Standard Performance Evaluation Corporation. Spec cpu 2006 bench-
marks. http://www.spec.org/cpu2006, 2023.

[42] C. A. Waldspurger. Memory resource management in vmware
ESX server. In D. E. Culler and P. Druschel, editors, 5th Sympo-
sium on Operating System Design and Implementation (OSDI 2002),
Boston, Massachusetts, USA, December 9-11, 2002. USENIX Associa-
tion, 2002. URL http://www.usenix.org/events/osdi02/tech/
waldspurger.html.

[43] X. Wang, X. Liao, H. Liu, and H. Jin. Big data oriented hybrid memory
systems. Big Data Research, 2018.

[44] X. Wang, H. Liu, X. Liao, J. Chen, H. Jin, Y. Zhang, L. Zheng, B. He,
and S. Jiang. Supporting superpages and lightweight page migration
in hybrid memory systems. ACM Trans. Archit. Code Optim., 16(2):
11:1–11:26, 2019. doi: 10.1145/3310133. URL https://doi.org/10.
1145/3310133.

[45] L. Xu. Prevent any host user from enabling pebs for profiling
guest. https://lore.kernel.org/all/6c4bd247-1f81-4b43-
9e21-012f831d26b8@linux.intel.com/T/, 2023.

[46] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee. Nimble page
management for tiered memory systems. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 331–345, 2019.

[47] Y.-S. Yang. Avoid unnecessary work in guest filtering.
https://lists.ubuntu.com/archives/kernel-team/2019-

November/105645.html, 2023.
[48] A. Zhu. Linux thp shrinker. https://lwn.net/Articles/910993/,

2023.

1012 2024 USENIX Annual Technical Conference USENIX Association

