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Abstract

Modern memory management systems suffer from poor per-
formance and subtle concurrency bugs, slowing down ap-
plications while introducing security vulnerabilities. We ob-
serve that both issues stem from the conventional design of
memory management systems with two levels of abstraction:
a software-level abstraction (e.g., VMA trees in Linux) and
a hardware-level abstraction (typically, page tables). This
design increases portability but requires correctly and effi-
ciently synchronizing two drastically different and complex
data structures, which is generally challenging.

We present CORTENMM, a memory management system
with a clean-slate design to achieve both high performance
and synchronization correctness. Our key insight is that most
OSes no longer need the software-level abstraction, since
mainstream ISAs use nearly identical hardware MMU for-
mats. Therefore, departing from prior designs, CORTENMM
eliminates the software-level abstraction to achieve sweep-
ing simplicity. Exploiting this simplicity, CORTENMM pro-
poses a transactional interface with scalable locking proto-
cols to program the MMU, achieving high performance by
avoiding the extra contention in the software-level abstrac-
tion. The one-level design further enables us to formally
verify the correctness of concurrent code operating on the
MMU (correctness of basic operations and locking proto-
cols), thereby offering strong correctness guarantees. Our
evaluation shows that the formally verified CORTENMM out-
performs Linux by 1.2X to 26X on real-world applications.
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1 Introduction

The memory management system (henceforth, MM) is at
the core of any operating system [28, 80, 84], responsible
for handling memory resources and programming MMU
hardware (i.e., page tables and TLBs). Shared memory multi-
threading, the prevailing way to exploit modern multicore
processors, relies on the MM. To avoid being a performance
bottleneck, the MM must efficiently handle requests from
multiple threads. Furthermore, given its critical role in secu-
rity, there is a potential for severe consequences of bugs in
the MM, especially subtle concurrency bugs [70, 88, 89].

However, despite decades of development, modern mem-
ory management still struggles with both performance and
correctness. Even after a long list of enhancements [30, 45, 46,
55], Linux memory management is still a severe scalability
bottleneck for multithreaded applications.

A few academic works propose sophisticated data struc-
tures and/or advanced concurrency control mechanisms [31,
33, 42, 43, 64], but, as shown in Figure 1, the scalability of
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Figure 1. The multicore performance of two other memory sys-
tems and CORTENMM, each thread: (a) mmaps a region and access it,
leading to page faults; (b) munmaps a region of mmaped pages.

memory management is still lacking. Linux developers re-
ported that such performance bottlenecks slow down im-
portant real-world tasks, such as Android app startup [29].
Worse still, performance optimizations for memory man-
agement systems are often complicated, and thus highly
susceptible to concurrency bugs, leading to security vulner-
abilities [2-8, 18—20].

This paper presents CORTENMM!, a novel memory man-
agement system offering both high performance and strong
correctness guarantees. CORTENMM is a clean-slate design,
part of a larger effort to develop a production OS from scratch.
Our goal is to build a general-purpose OS, supporting main-
stream ISAs, namely, x86 [21], ARM [17], and RISC-V [22],
and serving as a drop-in replacement for Linux across vari-
ous production environments, including trusted execution
environments [81], data centers, and mobile computing.

We designed CORTENMM to meet three key requirements:
1) Full featured: CorTENMM must provide the same inter-
faces to applications and support advanced semantics that
applications often rely on, such as on-demand paging and
copy-on-write. 2) High performance: CORTENMM must not
be a performance bottleneck for modern applications, espe-
cially multithreaded ones. 3) Synchronization correctness:
CorRTENMM must provide strong correctness guarantees on
concurrency, instead of relying exclusively on testing.

To meet the above requirements, CORTENMM’s design is
guided by our observation that the performance and correct-
ness deficiencies of MMs stem from their use of two levels
of abstraction. Specifically, most OSes [9, 10, 12, 13, 15, 16,
33, 40, 43, 65] involve 1) a software-level abstraction, e.g., a
balanced tree storing a set of virtual memory regions in a
process as in Linux, and 2) a hardware-level abstraction, e.g.,
page tables. The goals of this design, which dates back to
SunOS in 1986 [52], were to 1) increase the portability to
diverse MMU hardware; and 2) support advanced memory
semantics, such as on-demand paging. However, to ensure
portability, the data structure in a software-level abstraction
must be general, thus not similar to the one in a hardware-
level abstraction. Unfortunately, correctly synchronizing two
drastically different data structures requires complex con-
currency control, leading to subtle concurrency bugs. In
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addition, two levels of abstraction generally introduce more
synchronization overhead, thereby reducing scalability.

Our key insight is that a software-level abstraction is no
longer necessary for OSes targeting mainstream ISAs (e.g.,
x86, ARM, and RISC-V). This is because, unlike in the past,
when there was greater diversity among MMUs (e.g., seg-
ments [86], hashed page tables [53]), the mainstream ISAs
mentioned above uniformly adopt multi-level radix tree page
tables. Current OSes hides the minor differences among these
MMUs with language features, such as C macros, rather than
software-level abstractions. Furthermore, while providing
advanced memory semantics requires storing extra state out-
side the MMU, this does not mandate a decoupled different
level of abstraction and the associated complexity.

Based on the above, CORTENMM departs from prior de-
signs by eliminating the software-level abstraction. Instead,
CoRTENMM uses language features to maintain portability
and associates each page in the page table with an auxil-
iary memory region that stores only the minimal necessary
information to support advanced semantics. Such sweep-
ing simplicity enables us to design a high-performance and
intuitive concurrency control mechanism, as detailed next.

CorTENMM introduces a transaction interface as the only
way to program the MMU. The transaction interface takes
as input a virtual memory region and a sequence of basic
operations (e.g., map or unmap pages) that operate within the
region. CORTENMM subsequently applies all basic opera-
tions within a transaction atomically, significantly simplify-
ing reasoning regarding the concurrency control. Further-
more, the locking protocols for the transactional interface do
not suffer from additional contention for the software level
abstraction, thereby achieving high performance while en-
suring atomicity. We design two locking protocols: a simple
one (CORTENMM,,) based on readers-writer locks, and an
advanced one (CORTENMM,4y) based on lock-free page table
traversal enabled by RCU [1].

Finally, CORTENMM uses programming language tech-
niques to offer strong synchronization correctness guarantees.
Our industry partners view testing alone as insufficient for
the complex yet critical MM, especially for a new design like
CorTENMM. Therefore, thanks to its simplicity and clean
concurrency control semantics, we were able to formally ver-
ify the concurrency code that operates on the MMU, the core
part of CORTENMM. We proved 1) functional correctness of
the basic operations (map, unmap, etc.) in the transactional
interface, and 2) the correctness of both locking protocols.
For other components, we use safe Rust [14] to ensure that
they are memory-safe, data-race-free, and can only use the
verified transactional interface to access the MMU.

We evaluated CORTENMM on a 384 core machine with
workloads that stress memory management. Our evaluation
shows that, for most memory management operations, the
formally verified CORTENMM scales well. CORTENMM out-
performs Linux by 1.2X to 26X on real-world benchmarks.



In summary, this paper makes the following contributions:

o Insights. We reveal that 1) the root causes of poor

performance and correctness in memory management

lie in the two levels of abstraction, and 2) the software-
level abstraction is unnecessary for modern OSes.

e Transactional interface. We contribute an efficient
and formally verified transactional interface for MMU
operations, which future work can build upon.

e CORTENMM. We design CORTENMM, a full-featured
memory management system achieving high perfor-
mance while offering strong synchronization correct-
ness guarantees, suitable for modern MMUs.

The artifact of CORTENMM is available at https://github.
com/TELOS-syslab/CortenMM-Artifact.

2 Background

The context of this work is a collaboration between academic
researchers and industry practitioners to develop a produc-
tion OS named ASTERINAS [79] from the ground up (§2.1). As
part of this larger project, we are investigating the potential
benefits of departing from the long-standing software-level
abstraction (§2.2) in memory management systems.

2.1 Building a Production OS from Scratch

Our OS, ASTERINAS, is designed to be general-purpose, and
suitable for various production environments. The goal is a
production-strength, open-source, drop-in replacement for
Linux on mainstream ISAs, namely, x86, ARM, and RISC-V.
The development team currently comprises around thirty
people, twelve of whom are full-time engineers. The core
part of ASTERINAS (excluding drivers) consists of 130K lines
of code. For compatibility with existing applications, ASTER-
INAS provides the same system call interfaces and replicates
key features of Linux. At the time of this writing, we have
implemented 219 (out of 336) of the most commonly used
system calls in Linux, able to run large-scale applications,
such as JVM and MySQL.

2.2 Current MM: the Good, the Bad, and the Ugly

This subsection reviews the advantages and disadvantages
of the conventional memory management system design,
which is based on two levels of abstraction.
The good: supporting advanced memory management
semantics and increasing portability. The earliest de-
sign we found that introduced two levels of abstraction is
SunOS [52], dating back to 1986. The software-level abstrac-
tion represents the process address space as a set of virtual
memory areas. We refer to these virtual memory areas as
VMAs, the term used in Linux. A VMA represents a set of
contiguous virtual pages with the same properties (e.g., the
same access permissions).

SunOS introduced the software-level abstraction for two
reasons [52]. First, VMAs maintain state not in the hardware
MMU that is required for advanced memory management
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Type Operations Locks to acquire
VMA @ Read VMA fields Reader side of mmap_lock or the VMA lock.
@ Write VMA fields Writer side of mmap_lock and the VMA lock.
PT ® Access page table Acquire the locks for writes; no locking for reads.
@ Page table traversal Locks to read VMA fields.

Locks to read VMA fields
and the lock of the parent page table.

Locks to write VMA fields
and the page table entry has been cleared.

® Clear a page table entry

@ Free a page table

Table 1. Simplified locking rules for Linux virtual memory.

semantics. For example, to support on-demand paging, the
OS initially only reflects mmaped regions in VMAs and later
propagates changes to the hardware MMU on demand (upon
a page fault). Second, the software-level abstraction decou-
ples most memory management code from hardware. This
facilitates porting to various types of hardware MMUs, in-
cluding segments [86], inverted [58], hashed [53], and linear
page tables [83], with some employing software TLBs [56].
The two-level abstraction design became the standard
for memory management systems. In the 1990s, Linux [12]
and BSD [72], two mainstream OSes at that time, inherited
this design. Today, most modern OSes, including mature
industry OSes (Linux [12], FreeBSD [9], Solaris [15], Win-
dows [16], Fuchsia [10], and HongMeng [40]) and academic
proposals (K42 [65], Barrelfish [31], NrOS [33], BoNsATI [42],
RadixVM [43]), adopt this design.
The bad: complicated concurrency control protocol.
With modern servers commonly comprising hundreds of
cores, a drawback of two levels of abstraction has emerged:
the requirement for complex fine-grained concurrency con-
trol. Below, we use the latest Linux design as an example.
To balance portability, feature support, single- and multi-
core performance, the software-level abstraction in Linux
evolved to a balanced tree [47] (now an RCU-safe maple
tree [55]) indexed by intervals: a node stores the entire VMA
by recording the start and end memory addresses. The data
structure of the software-level abstraction is optimized for
advanced memory management operations and, to maintain
portability, is not tied to any specific hardware MMU [87].
Linux memory management employs four different locks:
1) mmap_lock, protecting the whole address space; 2) VMA
locks, guarding individual VMAs, 3) a coarse-grained page
table lock, protecting all entries above the level 3 page table,
which are closer to the page table root, and 4) fine-grained
page table locks, each protecting a page in level 2 or level
1 page tables. The first two VMA-related locks are readers-
writer locks, while the last two for page tables are exclusive.
Table 1 lists the simplified locking rules summarized from
the official 5000-word Linux document [62]. Rules for either
VMAs or page tables are simple. However, rules for basic
memory operations are much more complicated, requiring
dealing with the locks in both levels. All operations must
hold at least the locks for VMA read to prevent the VMA from
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1 /* during page_fault(addr): */ 1 /* during mmap(addr, len): */
2 rcu_start_read(mm.tree) 2 write_lock(mm.mmap_lock)

3 vm_area_struct *vma 3 vm_area_struct *vma

4 = find_vma(mm.tree, addr) 4 = find_vma(mm.tree, addr)

5 rcu_end_read(mm.tree) 5 write_lock(vma.lock)

6 // checked vma == NULL 6 expand(vma)

7 read_lock(mm.mmap_lock) 7 write_unlock(vma.lock)

8 vma = find_vma(mm.tree, addr) 8 write_unlock(mm.mmap_lock)

9 // checked vma == NULL

10 upgrade_lock (mm.mmap_lock) 1 /* during munmap(addr, len): */
11 vma = find_vma(mm.tree, addr) ; yrite_lock(mm.mmap_lock)

12 write_lock(vma.lock) 3 do {

13 expand(vma) 4 // in vma_start_write()

14 write_unlock(vma.lock) 5 write_lock(vma.lock)

15 downgrade_lock(mm.mmap_lock) ¢  WRITE_ONCE(vma.vm_lock_seq)
16 // No need to read lock VMA. 7 write_unlock(vma.lock)

17 // Read locked mm, operate PTs g } for_each_vma(mm.tree)

18 lock(mm.page_table_lock) 9 downgrade_lock (mm.mmap_lock)
19 unlock(mm.page_table_lock) 10 // Marked VMAs before downgrade
20 lock(pmd) 11 // mm, do without VMA locks
21 *pmd = pmd_alloc() 12 unmap_vmas ()

22 unlock(pmd) 13 free_page_tables()

23 read_unlock (mm.mmap_lock) 14 write_unlock (mm.mmap_lock)

Figure 2. Part of Linux’s locking for page faults, nmap and, munmap.

being deleted or modified concurrently. They then acquire
page table locks only for writing to the page table. Freeing a
page table entry is an exception: it requires the code to have
cleared the entry first, and thus only holds VMA locks.

The challenge lies in handling complete operations such

as system calls (e.g., nmap, munmap) and page faults?. Such op-
erations involve multiple VMAs, and perform a combination
of several basic operations (e.g., first traverse the page table
and then insert an entry). The locking rules for such cases
are hard to derive from Table 1 and are only documented
in the code. Figure 2 shows part of the locking in several
Linux operations. Much of the complexity in page fault is
in finding the most scalable way (L2-L15) at the VMA level to
modify a VMA, specifically, expanding a VMA (L13) to match
the subsequent updates in the page table (L21). Interestingly,
while mmap also requires expanding a VMA (L6), it avoids
the complexity and simply acquires the writer side of the
coarse-grain mmap_lock.
The ugly: scalability bottleneck for multicore applica-
tions and concurrency bugs. Despite the complex fine-
grained concurrency control discussed above, Linux memory
management is still a well-known scalability bottleneck for
multithreaded applications. Several academic works mitigate
such overhead with new data structure designs [42, 43, 64]
and/or advanced concurrency control [31, 33], but it is still
far from ideal (§6.3). The memory management bottleneck
is reported to affect important real-world use cases by se-
verely reducing the performance of, for example, application
startup in Android, thread creation in Google Fibers, and
TCP zero-copy [29].

Furthermore, modern memory management systems are
susceptible to subtle concurrency bugs, leading to severe vul-
nerabilities. For example, Linux introduced the fine-grained
concurrency control presented above in April 2023 [30]. Over

2 We note that other OSes may have a simpler locking rule for these complete
operations. For example, Windows does not allow operations that involve
multiple VMAs [75] and thus has a simpler locking rule.
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On-demand Page Reverse mmaped Huge NUMA

paging swapping mapping file page policy
Linux v v v v v v v
RadixVM [43] v v X X v X v
Nros [33] X X X X X v v
CorTENMM v v v v v v X

Table 2. A comparison of supported memory management features.
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Figure 3. CORTENMM architecture.

the past two years, there have already been ten CVEs [2-
8, 18-20] resulting from concurrency bugs in this recent
change. Among these ten CVEs, nine can be exploited to
crash the system, and five can lead to other severe vulnera-
bilities, such as information leak and privilege escalation.

3 An Overview of CORTENMM

This section overviews CORTENMM, a clean-slate, high-
performance memory management system with strong
concurrency correctness guarantees. CORTENMM manages
MMU hardware, allocates virtual address spaces and phys-
ical pages, and handles all memory management system
calls (e.g., mmap, munmap, mprotect) as well as page faults.

3.1 Design Goals

We design CORTENMM to meet the following goals.

e Full featured. To replace Linux (§2.1), CORTENMM
must maintain compatibility with existing applications
by providing the same interfaces as Linux and support-
ing common memory management semantics such as
those shown in Table 2.

High performance. CORTENMM should not be an
OS performance bottleneck for both single- and multi-
threaded applications.

Synchronization correctness. High performance re-
quires fine-grained locking, which has proven chal-
lenging even for experienced OS developers (§2.2).
CoRTENMM should provide an intuitive locking pro-
tocol that is easy to reason about and offers stronger
correctness guarantees than testing alone.

3.2 Design Insight

CoRrRTENMM simultaneously achieves high performance and
synchronization correctness. Our observation is that the two
levels of abstraction are the root cause of both challenges,
since it is difficult to correctly and efficiently synchronize
two drastically different and complex data structures.



More specifically, the synchronization correctness issue
stems from complicated locking rules. At first glance, as
shown in Table 1, concurrency control for either level is
simple. However, complication arises when properly syn-
chronizing both levels to avoid state inconsistency between
them, especially in cases involving multiple operations. Fur-
thermore, synchronizing both levels requires more concur-
rency control, which leads to possible contentions, reducing
scalability. For example, concurrent page faults on disjoint
memory regions scale at the page table level, but they may
require modifying the VMA and thus contend at the VMA
level (Figure 2).

Our key insight is that the two-level abstractions no longer
suit most modern OSes since the two main reasons (§2.2)
for introducing the software-level abstraction are largely
gone. First, most, if not all, modern ISAs (e.g., x86, ARM,
and RISC-V) utilize similar MMU hardware based on multi-
level radix tree page tables. To hide the minor differences
among these hardware MMUs, kernel code of current OSes
already uses language features, such as C macros, rather than
the software-level abstraction. Second, while supporting ad-
vanced semantics (e.g., those shown in Table 2) requires
bookkeeping state that is not included in the MMU, this does
not mandate another level of abstraction.

3.3 A Single-Level Abstraction Design

Data structure. Departing from prior design, as shown
in Figure 3, CORTENMM eliminates the software-level ab-
straction and the associated complexity, achieving sweeping
simplicity. CORTENMM associates each page table page (PT
page) with a page descriptor. The page descriptors are allo-
cated in a contiguous memory region during the OS boot.
Each descriptor is indexed by the physical page number (i.e.,
physical address divided by page size) of the corresponding
PT page. The descriptor consists of a lock to protect itself,
the PT page, and a per-PTE (page table entry) metadata array.

The per-PTE metadata array, indexed by the PTE offset,

stores the minimal necessary state for advanced semantics (in
Table 2). This array is allocated on demand and freed together
with the corresponding PT page.
Programming interface. Exploiting the simplicity of
the single-level abstraction, we further design a scalable
and intuitive concurrency control mechanism. Specifically,
CoRrRTENMM introduces a transactional interface (Figure 4)
and uses it as the only way to program the MMU.

The interface design decouples concurrency control from
operations; the caller first invokes AddrSpace: : 1lock (r) (L10)
to specify a virtual memory region. The AddrSpace: : lock(r)
returns a RCursor object, and the caller uses this RCursor to
specify any combination of four basic operations (i.e., query,
map, mark, and unmap) (L12), which CoRTENMM atomically
performs within the specified range. The combination of the
basic operations encapsulates all ways to manipulate the
MMU. As an optimization, CORTENMM creates page table
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pub enum Status { // Variants of the virtual page state.
Invalid, Mapped(PhysPage, Perm),
// Below are virtually allocated page states.
PrivateAnon(Perm),
PrivateFileMapped(File, Offset, Perm),

Swapped (BlockDev, BlockNum, Perm),

/% . shared anonymous, etc. */

}
impl AddrSpace {
pub fn lock(&self, r: Range<Vaddr>) -> RCursor;

impl RCursor {
/// Returns the status of the virtual page at addr.
pub fn query(&mut self, addr: Vaddr) -> Status;
/// Maps a physical page to addr.
pub fn map(&mut self, addr: Vaddr, page: PhysPage);
/// Changes a memory region specified by range to status.
pub fn mark(&mut self, range: Range<Vaddr>, status: Status);
/// Unmaps a virtual region specified by range
pub fn unmap(&mut self, range: Range<Vaddr>);
}

// On destruction, the ‘RCursor’ releases the acquired locks.
impl Drop for RCursor { fn drop(&mut self) { /*...*/ } }
Figure 4. The transactional interface to program the MMU. Status
encodes state for various types of virtual pages (e.g., for a swapped
page, Status stores the disk ID, the location on the disk, and the
permission). The comments explain what each basic operation does.

entries on demand, using upper-level PT pages to represent
large memory regions with identical status.

Locking protocol. The simplicity of handling only MMU
hardware further enables us to design the locking proto-
col (§4.1) that directly locks on PT pages, exploiting the
hierarchy structure of the page table. By eliminating con-
tentions on the software-level abstraction, our protocols
achieve much better scalability than conventional two-level
abstraction designs and can support a transactional interface.
Concurrency control semantics. As a result, CORTENMM
offers simple yet powerful concurrency control semantics:
1) all memory operations within a transaction are executed
atomically, simplifying the reasoning for complex cases; and
2) concurrent transactions are serialized only when they
operate on overlapping memory regions, while transactions
on disjoint regions execute in parallel.

3.4 Achieving Strong Correctness Guarantee

Formal verification. The design of CORTENMM also en-
ables us to formally verify concurrency code operating on the
MMU (§5). Verification offers much stronger guarantees than
testing, which our industry partners consider insufficient
for the complicated yet critical memory management code,
especially for a new implementation like CORTENMM. We
verified 1) the correctness of both locking protocols; and 2)
the functional correctness of RCursor operations, including
the well-formedness invariant of the page table.

Verification is made possible for the following two reasons.
First, the transactional interface decouples concurrency con-
trol from operations. Therefore, one can verify these two
aspects separately, simplifying the verification. Second, clean
concurrency semantics let us write simple formal specifica-
tions provable with modest manual effort.



Rust. We program CoRTENMM in Rust, which offers strong
correctness guarantees for the rest of the code (e.g., maintain-
ing usage statistics, allocating physical pages) that does not
operate on the MMU. CorTENMM forces such code to only
use safe Rust (by #![deny(unsafe_code)]), offering two benefits.
First, safe Rust helps detect concurrency bugs by preventing
data races. CORTENMM uses simple concurrency control (e.g.,
mutual-exclusive locks) in such code, and thus is mostly sus-
ceptible to straightforward bugs (e.g., forgetting to acquire
the lock before access), which data race detection can effec-
tively catch. Second, safe Rust, which cannot contain inline
assembly, prevents the rest of the code from bypassing the
transactional interface to access the MMU, thereby ensuring
the correctness guarantees.

3.5 Discussion

Portability and security on mainstream ISAs. Current
mainstream ISAs (e.g., x86, ARM, RISC-V) all use the MMU
format that CORTENMM targets (i.e., a multi-level radix tree
page table; see §4.4 for more discussion). For these ISAs,
eliminating the software-level abstraction improves perfor-
mance (§6.2), security, and even portability. CORTENMM
improves security by offering stronger correctness guaran-
tees and avoiding extra kernel code for the software-level
abstraction. For portability, CORTENMM uses Rust traits to
hide the hardware differences, similarly to how Linux uses
C macros (§4.5). Our evaluation (§6.7) shows that porting
from x86 to RISC-V and supporting new MMU features (i.e.,
MPK) only incur minor code changes (less than 200 LoC).
The changed LOC is even smaller than Linux, mostly because
Linux needs to add extra code for VMAs.

Limitations. CORTENMM does not apply to ISAs whose
MMU is not a multi-level radix tree page table. Since
CORTENMM eliminates the software-level abstraction, port-
ing it across these ISAs likely incurs significant efforts. Fur-
thermore, since the locking protocol of CORTENMM exploits
the page table structure, it may not apply to other MMUs.
Retrofitting to existing OSes. We believe the idea of elimi-
nating the software-level abstraction also applies to a mature
OS such as Linux, if Linux drops support for ISAs that do
not use multi-level linear page tables. However, this requires
substantial engineering efforts.

4 CORTENMM Design
4.1 The Locking Protocol

Upon AddrSpace: : lock(r) (Figure 4), CORTENMM performs
the locking protocol to lock the correct set of PT pages,
fulfilling the concurrency control semantics (§3.3). We re-
fer to PT pages closer to the root as higher-level ones and
those close to the leaf as lower-level ones. We first present
a very simple readers-writer lock version of the locking
protocol (CORTENMM,y,), followed by a more advanced ver-
sion (CORTENMM,q4y), and conclude by discussing the cor-
rectness of CORTENMM,,, and CORTENMM,4y.

1087

def AddrSpace::lock(addr_space, range):
cur_pt_page = addr_space.pt_root
while child_pt_page_should_cover(cur_pt_page, range):
read_lock(cur_pt_page)
if cur_pt_page.has_child(range):
cur_pt_page = child_node_of(cur_pt_page, range)
else: read_unlock(cur_pt_page) break
write_lock(cur_pt_page) # lock one implicitly locks all
ranged_cursor.root = cur_pt_page
return ranged_cursor

1
2
3
4
5
6
7
8

9
10
11
12 def AddrSpace::unlock(ranged_cursor):

13 release_locks_in_reverse(ranged_cursor)

Figure 5. Pseudocode of the CORTENMM,y, locking protocol.

def AddrSpace::lock(addr_space, range):
while True: # retry loop
start_rcu_read_critical_section()
cur_page = addr_space.pt_root
while child_pt_page_should_cover(cur_page, range):
ch_page = atomic_read_child_page_of(cur_page, range)
if ch_page == None: break
cur_page = ch_page
lock(cur_page) # this is covering PT page now
if cur_page.stale: # race with unmap?
unlock(cur_page)
end_rcu_read_critical_section()
continue # retry since the PT page is being removed
end_rcu_read_critical_section()
ranged_cursor.root = cur_page
# lock all descendants of the covering PT page
dfs(ranged_cursor.root, for_each page: lock(page))
return ranged_cursor

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

def AddrSpace: :unlock(ranged_cursor):
# release the locks in the reversed order
rev_dfs(ranged_cursor.root, for_each page: unlock(page))
unlock(ranged_cursor.root)

def RCursor::unmap(ranged_cursor, range):
page = navigate_to_target_page(ranged_cursor, range)
if NO_NEED_TO_REMOVE_PTS:
# ... logics where there is no need to remove PTs
elif NEED_TO_REMOVE(page, child):
atomic_remove_pt_from_parent(page, child)
rev_dfs(child, for_each page:
page.stale = True
unlock(page)

D)
rcu_delay_free(child)

Figure 6. Pseudocode of the CORTENMM,4, locking protocol.

CORTENMM,,. Figure 5 shows the pseudocode of the
CORTENMM,, locking protocol. The thread traverses from
the root of the page table (L2). It first checks, assuming the
current PT page is fully populated, whether one of its child
PT pages completely covers the specified range (L3). If so,
it acquires a reader lock on the PT page (L4), and moves to
that child PT page if it exists (L6) and continues. Otherwise,
the current PT page is the lowest possible level one that
covers the entire region specified by the range. We term this
PT page the “covering PT page”. The thread releases the
reader lock of the covering PT page (L7) and acquires the
writer lock (L8). The covering PT page is recorded in the
RCursor (L9) to perform basic operations. When the RCursor
goes out of scope, the acquired locks are automatically re-
leased in the reverse order of the lock acquisition (L13). This
very simple locking protocol outperforms Linux by 15X in
real-world benchmarks (§6.4).
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Figure 7. CORTENMM,4, handles concurrent unmap and locking.

CoRTENMM,,, is based on mutually exclusive spin-locks.
Figure 6 shows the pseudocode. We first present the basic
locking protocol, followed by the handling of a corner case.
Basic locking protocol of CORTENMM,4,. The locking
protocol operates in two phases: a traversal phase (L2-L8) and
then a locking phase (L9-L17). The traverse phase finds the
covering PT page similar to CORTENMM,,. However, unlike
CORTENMM,y,, the traversal phase does not acquire any lock,
thereby offering better scalability than CORTENMM,,.

The locking phase locks the PT page (L9) and then per-

forms a preorder DFS search to lock all the PT pages that
are descendants of the covering PT page (L17). The locking
phase is necessary since CORTENMM,4, cannot simply lock
the covering PT page as CORTENMM,y,. Otherwise, since the
traverse phase is lockless, another thread may bypass the
covering PT page to operate on the same PT page as the
current thread, violating mutual exclusion.
Unmapping PT pages in CORTENMM,,. Figure 7 shows
a corner case in CORTENMM,4y, involving unmapping PT
pages. Thread T; has locked PT pages w, x, y, and z and
is about to unmap (and thus free) z. Meanwhile, thread T,
tries to lock z. Without special handling, this race leads to
use-after-free. For example, another thread T3 may reuse the
freed z, making T, access corrupted state.

CORTENMM,q4, handles this race with RCU (read copy
update) [1]. To unmap a PT page, T; first atomically clears
the PTE entry in the parent PT page (L30). Therefore, other
threads either see the old PT page or a cleared PTE entry.
Next, T; keeps the freed PT pages in a global array (L35)
that we call the RCU monitor. We put the traversal phase
in an RCU read-side critical section (L3-L14). This enables
CORTENMM,4, to check, for each PT page in the RCU mon-
itor, if any threads remain in the read-side critical section
to access the PT page. The RCU monitor frees the PT page
when no threads can access the PT page, thereby preventing
accesses to corrupted state.

With RCU, T, may still access a stale state. Specifically, z
has been removed from the page table before T, locks z, and
thus any operation T, performs on z is lost. CORTENMM,4y
handles this by marking unmapped PT pages in a special
stale status (L30). Once a thread locks a covering PT page, it

1 fn do_syscall_mmap(offset: Vaddr, size: usize, perm: Perm) {
2 let offset = if offset != 0 { offset } else { alloc_va(Q) };
3 let range = offset..offset + size;

4 let mut rcursor = this_addr_space!().lock(range)?;

5 if rcursor.query(range) { /* necessary checks */ }

6 rcursor.mark(range, Status::PrivateAnon(perm));

7
8

}

9 fn do_syscall _munmap(offset: Vaddr, size: usize) {

10 let range = offset..offset + size;

11 let mut rcursor = this_addr_space!().lock(range)?;
12 rcursor.unmap (range) ;

13}

15 fn page_fault_handler(faulting_addr: Vaddr, reason: PFReason)
16 -> Result<()> {

17 let mut rcursor = this_addr_space!().lock(fault_range)?;

18 match rcursor.query(faulting_addr) {

19 // Fault on virtually allocated private anonymous page?
20 Status: :PrivateAnon(perm) => {

21 // ... SEGFAULT checks omitted.

22 rcursor.map(faulting_addr, alloc_zeroed(), perm);

23 }

24 // Fault on mapped page? Maybe COW or unprivileged access.
25 Status::Mapped(page, perm) => {

26 // Use the first unused bit as "copy-on-write".

27 if reason.is_write() && perm.contains(COW) {

28 // No need to COW if parent/child has left.

29 if page.meta().map_count() == 1 {

30 p -= COW; p |= WRITE;

31 rcursor.map(faulting_addr, page, p);

32 } else { // Do copy-on-write.

33 rcursor.map(faulting_addr, alloc_copied(&page),
34 “perm | WRITE); }

35 } else { return Err(SEGFAULT); }

36 this_addr_space! ().tlb_flush(faulting_addr);

37 }

38 VirtPageState::Invalid => { return Err(SEGFAULT); }

39 // ... other states (e.g., swapped, file-backed) omitted
40 } // This function is atomic under ‘rcursor’.

41 }

Figure 8. The simplified mmap, munmap, and the page fault handler.

checks if the page is in the stale status, and if so, re-traverses
the page table (L11-13). Figure 7 shows the complete process.
Correctness. Both CORTENMM,4, and CORTENMM,, en-
sure that memory operations within a transaction are per-
formed atomically since they resemble two-phase lock-
ing [32, 50]. They acquire all necessary locks before per-
forming any memory operation and release them only after
all operations end. The exception in L6 in Figure 6 does not
violate atomicity (since no operations have been performed)
nor cause a deadlock, since CORTENMM,,, always walks from
the page table root to leaves. We prove that both algorithms
maintain mutual exclusion in §5.

4.2 Handling Memory Management Operations

Figure 8 shows the code to perform mmap, munmap, and han-
dle page faults. Handling these operations is straightforward
with the transactional interface (Figure 4). For example, mmap
involves locking the range (L4), atomically performing @ a
query on the range to check, e.g., if it already exists; and @
if the check passes, mark the range with the desired access
permission. The mprotect and msync code is similar, where
the code locks a range and accesses/modifies the page state.

The page fault handler first uses the faulting address to
acquire an RCursor (L17). Afterwards, the whole complex
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1 /// A trait that abstracts over page table entries.
2 pub trait PageTableEntryTrait {

3 /// Returns if the PTE points to something.

4 /// Similar to ‘pte_present’ in Linux.

5 fn is_present(&self) -> bool;

6 } // Other methods ignored for brevity.

7 // x86-64 specific implementation:

8 impl PageTableEntryTrait for x86::PageTableEntry {
9 fn is_present(&self) -> bool {

10 self.0 & x86::PteFlags: :PRESENT.bits() != 0
11 || self.® & x86::PteFlags: :HUGE.bits()
12
13
14
15
16
17
18
19

=0

} // Other methods ignored for brevity.
// RISC-V specific implementation:
impl PageTableEntryTrait for riscv::PageTableEntry {
fn is_present(&self) -> bool {
self.0 & riscv::PteFlags::V.bits() != 0

} // Other methods ignored for brevity.

Figure 9. How CoRTENMM uses Rust traits to hide ISA differences.

page fault handling logic executes in a transaction (L18-
L40). At the beginning of the transaction, the page fault
handler uses query to check the state of the faulting ad-
dress (L18). Next, it performs different operations based on
the returned state. For example, the handler maps a new page
for a virtually allocated anonymous page (L22). Lines 18
to 40 show the complicated case of handling a page fault on
a mapped page, which all execute atomically.

4.3 Supporting Advanced Memory Semantics

Supporting advanced memory semantics relies on the meta-
data array, which stores state that cannot be held in the
MMU (Figure 3). Each entry in the array stores: 1) the
status of the corresponding virtual page (e.g., invalid,
virtually allocated but not mapped to a physical page,
mapped to a physical page, or swapped); and 2) extra state for
the page (e.g., access permissions for virtually allocated
pages, and the device ID and offset for swapped pages).
On-demand paging. CORTENMM supports on-demand
paging as follows. Upon mmap, CORTENMM marks the status
of the virtual memory pages as virtually allocated and
stores the access permissions in the corresponding metadata
array entries. Upon a page fault, CORTENMM maps the al-
located physical page with access permissions stored in the
metadata array entries.

Copy-on-write. CORTENMM implements copy-on-write
similar to Linux. Specifically, to facilitate copy-on-write, for
each virtual page, CORTENMM maintains two extra bits in the
corresponding metadata array entry: a shared bit, denoting
if multiple processes share the page, and a writable bit, de-
noting if the virtual page is actually writable. Upon fork, for
each virtual page, CORTENMM sets the shared bit, programs
the MMU to make the page read-only, and sets the writable
bit according to its original access permission. Afterwards,
upon a page fault caused by a write access, CORTENMM
checks if both the shared bit and writable bit are set. If so,
CoRTENMM clears the shared bit and copies the page.
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4.4 Handling Page Table Format Differences

Other than assuming the page table as a multi-level radix
tree, the implementation also assumes that the software-
controlled PTE bits can 1) identify the validity of the entry,
2) tell if the entry is a leaf, 3) enforce access permissions,
and 4) provide access and dirty information. All the ISAs
CORTENMM targets, namely ARM, x86, and RISC-V, meet
the above assumptions.

Figure 9 shows an example of how COoRTENMM hides
minor architecture differences with Rust traits. The code
hides the difference in the page table format, enabling the
rest of the CORTENMM code to remain unchanged.

4.5 Implementation

We implement CoRTENMM from scratch with 8028 lines
of safe Rust and 122 lines of unsafe Rust. The core trans-
actional interface consists of 829 LOC with 225 LOC for
CORTENMM,4, (153 for CORTENMM,,).

CoRTENMM currently supports page sizes of 4KB, 2MB,
and 1GB, using the conventional huge page mechanism.
Optimization: per-core virtual address allocator. Fol-
lowing prior work [36], to maximize scalability, CORTENMM
makes the virtual address allocator per core, and each core
owns a private share of the address space. This avoids the
contention on concurrent allocation and freeing.
Optimization: TLB shootdown. CoRTENMM borrows
optimizations from prior works to scale TLB shootdowns.
CoRTENMM parallelizes TLB flushes on all cores and does
early TLB flush acknowledgement [25]. Also, CORTENMM
supports lazy TLB shootdown on munmap (LATR [66]). With
this optimization, a CPU pushes unmapped pages and CPUs
that may require the TLB shootdown to its private per-CPU
buffer. On timer interrupts or rescheduling, each CPU checks
other CPUs’ buffers and flushes the relevant TLB entries.
Physical memory management. The physical memory
allocator and kernel heap allocator follow Linux’s buddy
system allocator and slab allocator. CORTENMM also borrows
the design of Linux page descriptors (struct page) to store
the additional metadata of any physical pages.

Locks. The lock of each PT page is stored in the cor-
responding page descriptor. CORTENMM;,, uses BRAVO-
pfqlock (phase fair queued lock [37] optimized with
BRAVO [49]). CORTENMM,q4, uses a simple preemption-
based RCU and the MCS lock [74] as the spin-lock.

Reverse mapping. We implement reverse mapping for both
named pages (i.e., have a path in a file system that refers to
this page) and private anonymous pages. The reverse map-
ping is recorded in the page descriptor, which points to either
the file object (for named pages) or the AddrSpace (for anony-
mous pages). The file object contains a tree of all AddrSpaces
that map the file, enabling reverse mapping. Reverse map-
pings of shared anonymous mappings are supported by nam-
ing the pages within the kernel. Reverse mappings are treated
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as hints. Access to the page table via reverse mapping always
goes through the transactional interface.

ARM support. The ARM support for our OS is currently
under development, so we have not ported CORTENMM to
ARM. We expect that such porting should be straightforward,
since ARM follows CORTENMM’s assumptions on the page
table format. ARM has special MMU features, such as the
contiguous bit [78] and the break-before-make rule [24].
Supporting these features does not require changing our
design or our proof (§5), but rather more engineering efforts.
NUMA policy support. CORTENMM runs on NUMA sys-
tems, but currently lacks NUMA policies (e.g., it does not op-
timize memory placement for NUMA). This can be addressed
through more engineering efforts. We plan to incorporate
Linux’s NUMA policy into CORTENMM by storing the state
of NUMA policy in the per-PTE metadata array.

5 Verifying Synchronization Correctness

We formally verify the core part of CoRTENMM that di-
rectly programs the MMU using Verus [67, 68], a recent
semi-automated SMT-based verifier for Rust. Figure 10 shows
the refinement hierarchy of our verification. We trust the
hardware, the Verus verifier (and the associated SMT solver),
and the rest of the OS code, e.g., the physical page allocator,
DMA programming code, code to implement concurrency
control primitives, such as locks and RCU.

Verification Goals. The implementation under transac-
tional interfaces is separated into two loosely coupled mod-
ules, enabling compartmental proof: the AddrSpace mod-
ule (L10 in Figure 4) that performs the locking protocol (§4.1)
and the RCursor module (L12) that manipulates the page
table. We prove the following key properties:

P1: Mutual exclusion. Both locking protocols in §4.1,
namely, CORTENMM,y, and CORTENMM,4y, correctly serial-
ize concurrent invocations of AddrSpace: : lock(r) operat-
ing on overlapping regions.

P2: Functional correctness of page table operations in the
RCursor module (query (), map(), mark(), and unmap()) and
that the page table is always well-formed.

5.1 Verifying the Correctness of Locking Protocols

Our proof leverages the property preservation of state ma-
chine refinements. We specify the mutual exclusion property
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at the top spec and prove that each lower spec refines the
upper spec, all the way down to the locking protocol imple-
mentation, to complete the proof. We focus on the proof of
CORTENMM,,, since the one for CORTENMM, 4, is similar.

Proving CORTENMM,y, adds two specs: a lower Atomic

Tree Spec and an upper Atomic Spec (for proving mutual
exclusion). We use the tokenized state machine [67] in Verus
to ensure the implementation refines the Atomic Tree Spec.
We prove that the Atomic Tree Spec refines the Atomic Spec
with forward simulation.
The Atomic Tree Spec. With Atomic Tree Spec, each
allocated PT page is in one of the following states: Unlocked,
ReadLocked, and WriteLocked. A ReadLocked PT page is also
associated with a counter storing the number of readers.

Each core also maintains the state for the locking protocol
execution. A core can only lock one range at a time, since
CorTENMM disables preemptions during page table opera-
tions (following Linux [71]). The state of a locking protocol
execution can be in Void, ReadLocking, or WriteLocked. The
latter two states also include a path field, storing a set of PT
pages that have been locked. Due to space limitations, we
omit the state and the associated transition for 1) the unlock
part of the protocol; and 2) PT page allocation/free.

There are three state transitions: LockingStart(core),
ReadLock(core,PT_page), and WriteLock(core,PT_page).
LockingStart changes the locking protocol state of the spec-
ified core from Void to ReadLocking. ReadLock requires that
the locking protocol is in the ReadLocking state, the tar-
get PT page is either in Unlocked or ReadLocked, and it is
a child of the last PT page in the path. It appends the path
field with the target PT page and updates the status for
the PT page. WriteLock requires that the locking protocol
is in the ReadLocking state and that the target PT page is
similarly lockable and is connectable to the path. It also ap-
pends the path field and changes the locking protocol state
to WriteLocked.

At the Atomic Tree Spec, we prove the non-overlapping
property: for any two cores with the locking protocol being
WriteLock, the respective last PT pages in their path (the
write-locked PT page) do not form an ancestor-descendant
relationship.

The Atomic Spec. The Atomic Spec is only left with
two states for the locking protocol: Null and Hold, which
maintains the path field. There are two state transitions:
lock(core,PT_page), which makes all PT pages that are de-
scendants of the specified PT page exclusively accessible by
the specified core, and the reverse operation, unlock(core).

We prove the mutual-exclusion property by showing that
the Atomic Spec maintains the following invariant: for any
lock, before its corresponding unlock is called, no other
operations can operate on a PT page that is an ancestor or
descendant of the PT page in this lock, as shown in Figure 11.

We show that the Atomic Tree Spec refines the Atomic
Spec by first providing a function interp that maps states



1 pub proof fn lemma_mutual_exclusion(
2 states: Seg<AtomicSpec::State>, steps: Seg<AtomicSpec::Step>,
3 core: Core, pt_page: PTPage
4 ) requires
5 all_hold_invariants(states),
6 steps.len() >= 1,
7 states_generated_from_steps(states, steps),
8 // The first transition is 'lock(core, pt_page)',
// and the remains are not the corresponding ‘unlock'.
steps[0] =~= AtomicSpec::Step::lock(core, pt_page),
forall |i| © < i < steps.len() && steps[i].is_unlock() ==>
core != _core, // _core = steps[i].get_unlock_0()
ensures
// Other cores cannot access the critical section.
forall |i| © < i < steps.len() &% steps[i].is_lock() ==>
core != _core && // _core = steps[i].get_lock_0(0)
// _pt_page = steps[i].get_lock_1()
lancestor_descendant(pt_page, _pt_page),
decreases steps.len(),
{ /* Proof details omitted */ }

)

10

Figure 11. Pseudocode of proof of the mutual-exclusion.

1 #[invariant]
2 pub spec fn page_table_wf(self) -> bool {
3 &&& forall |addr: int| self.pages.dom().contains(addr) ==> {
4 let page = #[trigger] self.pages[addr];
5 &&& forall |pte_addr: int|
6 page.pte_addrs.contains(pte_addr) ==> {
7 // pte is valid
8 &&& self.ptes.dom().contains(pte_addr)
9 &&& self.ptes[pte_addr].level > 1 ==> {
let pte = self.ptes[pte_addr];
// pte points to a valid page
&&& self.pages.dom().contains(pte.page_pa)
&&& forall |child_pte_addr: int|
#[trigger] self.pages[pte.page_pa]
.pte_addrs.contains(child_pte_addr) ==> {
let child_pte = self.ptes[child_pte_addr];
// child is valid
&&& self.ptes.dom().contains(child_pte_addr)
// child points to a valid page
&&& self.pages.dom().contains(child_pte.page_pa)
// child level relation
&&& self.ptes[child_pte_addr].level == pte.level - 1
333} // additional invariants omitted
24 }

Figure 12. The key invariant of page table.

in the Atomic Tree Spec to the states in the Atomic Spec.
Based on interp, we find the corresponding transition in
the Atomic Spec for each transition in the Atomic Tree Spec.
Next, we use the non-overlapping property in the Atomic
Tree Spec to show that the mapped state also maintains the
invariants in the Atomic Spec.

The proof of mutual exclusion for CORTENMM 4, is similar.
Given that RCU enables safe reads without explicit synchro-
nization with other threads, we model the traverse phase of
CORTENMM,4y, in a way that a core can start locking from
any PT page. Therefore, the proof only requires a minor
change in the Atomic Tree Spec to model the locking phase
to lock all descendants of the covering PT page, instead of
only the covering PT page.

5.2 Verifying the Correctness of Basic Operations

The transactional interface design enables us to verify the
functional correctness of operations that manipulate page
tables with sequential reasoning. As shown in Figure 10, we
connect the functional correctness proof with the mutual
exclusion proof with tracked ownership (PT page tokens).
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In terms of functional correctness, we prove that 1) a map
operation creates the correct entries in all levels of the page
table with the correct permission and metadata to map the
specified virtual page to the physical page; 2) similarly, an
unmap operation removes entries in any levels of the page
table covered by the specified virtual address range; 3) a mark
operation correctly updates the status of the specified range
by modifying relevant per-PTE metadata arrays (§3.3); and
4) a query operation walks along the page table and returns
the status of the queried page.

We also prove that, under these operations, the page table
is always a well-formed tree: for any page table entry with its
present bit set, it must either be the last level entry or point
to a valid PT page belonging to the lower level of the page
table, as shown in Figure 12. To prove this global invariant,
we introduce a lower WF Tree Spec to prove that subtrees
in the page table are well-formed.

5.3 Verification Limitations

We model the physical page storing the page table as a simple
linear array following prior work [51, 90], since our proof
does not employ a machine model.

In addition, our proven code is not linked with the
unproven code. Verus requires programmers to rewrite
the code with the provided primitives for proof and com-
pile such rewritten code with Verus. However, other than
CoRTENMM, part of our OS uses certain Rust features (e.g.,
min_specialization [23]) that require the nightly version
of the Rust compiler to compile. We found it difficult to link
these two types of code. As a result, we port the code to
Verus and verify it separately from the rest of the OS code.
We ensure that the proven code matches the implementation
in the kernel. We are also in the process of eliminating code
that relies on the nightly version of the Rust compiler.

6 Evaluation

Our evaluation answers the following questions:

e Does CORTENMM improve the single-threaded perfor-
mance of memory management operations? (§6.2)

e How scalable is CORTENMM? (§6.3)

e Does CORTENMM improve the performance of real-
world applications? (§6.4)

e What is the memory overhead of CORTENMM? (§6.5)

e What is the verification cost in CORTENMM? (§6.6)

e How portable is CORTENMM? (§6.7)

6.1 Evaluation Setup

Baseline. We compare CORTENMM with Linux (kernel ver-
sion 6.13.8), RadixVM [43], and NrOS [33]. Linux represents a
mature real-world kernel. RadixVM and NrOS represent state-
of-the-art research work for high-performance memory man-
agement. For a fair comparison, we disable all Linux’s miti-
gations (e.g., KPTI [61]) that may slow down its performance
for the evaluated workloads. We compile NrOS and RadixVM



Name Repeated operations on each thread
mmap Each thread mmap()s a 16KB region
mmap-PF Each thread mmapO's a 16KB region and then accesses it.
unmap-virt Each thread munmap()s a 16KB region not backed by physical pages.
unmap Each thread mmmap()s a 16KB region backed by physical pages.

PF Each thread accesses a 16KB region not backed by physical pages.

Table 3. Evaluated microbenchmarks.

in the release mode. Linux and CORTENMM both run Ubuntu
22.04; CORTENMM can run Ubuntu since, as discussed in §2.1,
our OS provides the same system call interfaces as Linux.
Other configurations are by default.

Environments. We conducted our evaluation on a two-
socket AMD EPYC 9965 machine. Each socket is equipped
with a 192-core CPU (384 cores in total) and 512GB
DRAM (1TB in total). We disabled hyper-threading and turbo
boost. We conducted the experiments in a virtual machine
because our OS (also RadixVM and Nr0S) lacks some drivers to
boot directly on our evaluation machine. We do not believe
that using a VM affects our performance claims.
Workloads. Our workloads cover a wide range of memory
management use cases. We use five microbenchmarks (Ta-
ble 3) to study the performance of several important work-
load patterns. For real-world applications, we use PARSEC
3.0 [34], metis [60], psearchy [82], and JVM (with Open-
JDK version 21.0.6 [26]). metis and psearchy are from MOS-
BENCH [36], a benchmark suite to study operating system
multicore scalability.

6.2 Single Thread Microbenchmarks

Figure 13 shows that CORTENMM,q, outperforms Linux for
four out of five microbenchmarks (namely, mmap-PF, PF,
unmap-virt, and unmap), ranging from 7.8% to 46.8%, ex-
cept for a small —3.1% degradation at mmap. Linux suffers in
unmap-virt because this operation requires the VMA tree to
split nodes, which is much more costly than simply remov-
ing the page table. For the rest, the performance difference
is due to the time Linux spends in the VMA.

CORTENMM,4, is slower than Linux in mmap due to allocat-
ing and initializing page table pages, which is slightly more
expensive than initializing a VMA structure in Linux. How-
ever, in most cases, Linux still needs to allocate the page table
pages eventually upon page faults. Therefore, CORTENMM, g4y,
outperforms Linux in mmap-PF.

CORTENMM,y, is slower than CORTENMM,q, due to acquir-
ing read locks, which is more costly than RCU. CORTENMM;,
still outperforms Linux, except for mmap, for the same reason
as CORTENMM, g4y .

NroS does not support on-demand paging. Therefore, we
only evaluate mmap-PF and unmap with NrOS. (For NroOS,
mmap-PF is mmap()) The performance of Nr0S and RadixVM
conforms to previously reported results [33, 43].
Operations that must enumerate the address space. The
worst case for CORTENMM are operations that must enumer-
ate the address space, such as fork(), since CORTENMM needs
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Figure 13. Single-threaded throughput of memory operations. Im-
provements of CORTENMM over Linux are listed below the figure.

to walk the page tables to locate all memory regions, while
Linux uses the VMA for that.

We evaluated such a case using LMbench [48, 73], which
includes three relevant micro-benchmarks: 1) fork, where a
dummy process repeatedly forks itself; 2) fork + exec, where
the child execves another dummy process after fork; and
3) shell, where the child does execlp sh -c echo. Figure 20
shows the results. CORTENMM is 17.7% slower than Linux
for fork. However, CORTENMM outperforms Linux by 23.0%
in fork + exec, since CORTENMM handles page faults faster
than Linux. Finally, in the shell benchmark, CORTENMM
performs similarly to Linux.

Summary. CorRTENMM speeds up single-threaded memory
operations by eliminating the software-level abstraction.

6.3 Multithreaded Microbenchmarks

Figure 14 shows the throughput of multithreaded mi-
crobenchmarks. Each microbenchmark has two variants. In
the low-contention one, each thread works on a private mem-
ory region, whereas in the high-contention one, each thread
works on a random region within a large shared region.

CORTENMM,q4, scales almost linearly for all low-
contention workloads, outperforming Linux by 33x (PF) to
2270x (unmap-virt) at 384 cores. This is because the scalable
locking protocol in CORTENMM,q4,, enables parallel memory
operations on disjoint memory regions. For high-contention
cases, CORTENMM,q4, does not scale beyond 64 threads due
to contention for the last-level PT page. However, at 384
cores, CORTENMM,4, still outperforms Linux by 3% (on PF)
to 1489x (on unmap).

The scalability difference between CORTENMMy,y, and
CORTENMM,4y is due to readers-writer locks vs. lockless
reads in the first phase. At 384 cores, for low-contention
workloads, CORTENMM,, outperforms Linux by 1.8x (PF)
to 275X (unmap). For high-contention workloads, at 384
cores, CORTENMM,, outperforms Linux by 5.9x (mmap-PF)
to 275X (unmap). However, in PF, Linux outperforms by 1.8X.

Linux suffers from poor scalability, due to the reason al-
ready explained in Figure 2. For mmap and unmap, Linux ac-
quires the writer-side of the coarse-grained mmap_lock due
to the complexity of fine-grained concurrency control. For
page faults, Linux does use a certain degree of fine-grained
concurrency control to achieve better scalability. However,
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Figure 15. Single-threaded performance of real-world applications.
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due to the extra synchronization for the VMA layer, Linux
is still not as scalable as CORTENMM 4y .

RadixVM also scales better than Linux, outperforming
CORTENMM,q4y in PF with high contention. This is because
RadixVM uses per-core private page tables, thereby avoiding
cache coherence traffic on the page table itself. However,
replicating the page table incurs severe memory overhead,
as shown in Figure 22. NrOS employs a simple coarse-grained
locking scheme within each NUMA replica, resulting in per-
formance comparable to Linux.

Summary. CorTENMM achieves good scalability due to
a fine-grained locking protocol for the page table and the
elimination of unnecessary contention for extra layers.

6.4 Real-world Benchmarks

We distinguish between two types of real-world workloads:
those that stress memory management and those that do
not. Most of the PARSEC benchmarks represent the latter
type; only dedup stresses memory management, while others
do not. For these benchmarks, as shown in Figure 15 and
Figure 21, CORTENMM does not reduce their performance.

We evaluate four workloads that stress memory manage-
ment: JVM thread creation, metis, dedup, and psearchy.
We found that the performance of two of the benchmarks,
dedup and psearchy, benefits from modern memory alloca-
tors (e.g., tcmalloc), which work around the deficient scala-
bility of Linux memory management, by, e.g., rarely return-
ing freed memory. Hence, the evaluation includes the impact
of using tcmalloc instead of the default allocator.

To understand the reason for performance improvements,
we measured the time breakdowns for different operations
using perf. We found that, for these workloads, due to the
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scalability bottleneck in memory management, as the thread
count increases, the fraction of time spent in the kernel
increases significantly,

To perform a breakdown analysis, we also evaluate
CoRTENMM,4, without the two optimizations: per-core vir-
tual address allocators and advanced TLB shootdowns (§4.5),
labeled as advp,se; and with only the per-core virtual page
allocators, labeled as adv,ypa.

JVM thread creation. Figure 16 shows the result of JVM
thread creation. This benchmark is used to mimic the An-
droid app startup use case discussed in §2.2. It creates N
Java threads, each of which runs on a dedicated core, and
measures the time between the beginning of thread spawn-
ing and the end of thread initialization. With 384 cores,
CORTENMM,4, and CORTENMM,, outperform Linux by 32%.
Linux suffers from the scalability bottleneck in the page fault
handler, when each thread accesses its stack, confirming
previously reported results [29].

metis. Figure 16 shows the result of metis, which performs
map-reduce on a 1.6 GB text file. Our setup is the same as
that in the RadixVM paper [43], which allocates 8 MB chunks
and never returns them to the kernel. CORTENMM,q4, outper-
forms Linux by 26X with 384 cores (15X for CORTENMM,,).
The two optimizations (shown by adv,,p, and advpase) bring
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Figure 18. Memory usage: tcmalloc vs. the default one in Linux.

small benefits since neither mmap nor munmap is frequent in
metis. CORTENMM,q, outperforms RadixVM by 1.24X with
128 cores. RadixVM crashes after 128 cores.

dedup. Figure 17 shows the result for dedup. With the
glibc default allocator (ptmalloc), Linux does not scale be-
yond 16 threads, since dedup frequently returns memory to
the OS using unmap, leading to contention for mmap_lock.
CoRTENMM,4, mitigates this contention, achieving 2.69x
higher throughput than Linux with 64 threads. The appli-
cation itself contributes to most of the contention beyond
64 threads due to unscalable userspace locking. tcmalloc
reduces the frequency of unmap by rarely returning memory
to the OS, allowing Linux and CORTENMM,g4, to scale to 64
threads. This performance improvement is at a cost of more
memory usage (Figure 18). CORTENMM,, performs similarly
to CORTENMM,4y.

psearchy. Psearchy indexes the Linux 2.6 source tree, con-
sisting of 368 MB of text across 33,312 files. Figure 17
shows the results. With ptmalloc, both CORTENMM,,, and
CORTENMM,4, outperform Linux by ~ 2X with 64 threads.
With tcmalloc, the performance of Linux improves but is
still not as good as CORTENMM. tcmalloc also incurs a 2X
memory overhead (Figure 18).

Summary. CoRTENMM improves multicore performance
for real-world applications with intensive memory manage-
ment operations. For other applications, CORTENMM does
not incur any additional overhead.
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mmap

Component Spec  Proof Impl
Locking Model 2023 2018 N/A
Locking Code 268 290 568
RCursor Ops 958 765 631
MM Common 442 259 346
Glue/Helper 1177 947 224
Total 4868 4279 1769

Table 4. Lines of code for Verus specifications, implementations
and proofs of the transaction interface.

Feature Ours Linux
RISC-V 252 699
Intel MPK 82 273
Intel TDX 368 471

Table 5. Lines of code added for different ISAs/MMU features in
MM (drivers and user level APIs excluded).

6.5 Memory Overhead

Figure 22 compares the memory storage overheads for mem-
ory management systems using metis. CORTENMM and
Linux have similar storage overheads. Figure 22 also pro-
vides the theoretical upper bound for CORTENMM’s memory
overhead, by fully populating the per-PTE metadata array for
each PT page. This doubles the memory overhead, but is still
within 2%. Therefore, eliminating the software-level abstrac-
tion does not incur significant memory overhead. RadixVM
replicates the page table, incurring extra memory overhead.

6.6 Verification Effort

Table 4 summarizes the verification efforts in lines of code.
The overall proof-to-code ratio is 5.2:1. We spent approxi-
mately 8 person-months on the verification. Verus can verify
our code in less than 20 seconds.

6.7 Portability

Table 5 shows the extra lines of code required for the x86 im-
plementation of CORTENMM to be ported to different archi-
tectures or support new MMU features (e.g., Intel TDX [11]
and Intel MPK [44]). Interestingly, Linux requires more port-
ing code for the evaluated ISAs and MMU features. This is
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because Linux needs to adapt both the software-level abstrac-
tion and hardware-level abstraction for porting. Therefore,
CORTENMM achieves better portability.

Figure 19 shows the single-threaded and 32-threaded per-
formance of memory operations in a RISC-V VM. The perfor-
mance differences between CORTENMM and Linux remain
similar to those in the x86-64 setting (Figure 13).
Summary. CorRTENMM maintains portability for modern
mainstream ISAs without sacrificing performance.

7 Related Works

Formally verified systems. Much prior work verifies the
entire OS [54, 63, 77, 90], or the whole memory management
system [51, 59], while CORTENMM verifies the core part of
memory management. The aforementioned prior work also
proves stronger correctness and/or safety properties (e.g.,
noninterference) than CORTENMM.

Recent advancement [38, 41, 57] focuses on reducing verifi-

cation efforts by, e.g., leveraging linear types in Rust, as done
in Verus [68]. VRM [85] verifies memory management on
ARM’s relaxed memory models, while CORTENMM assumes
a sequential memory model. We believe that the techniques
in VRM are helpful for verifying CORTENMM on ARM.
Prior OSes written in Rust exploit various interesting
language features. For example, Tock [69], RedLeaf [76], and
Theseus [35] leverage Rust for fine-grained lightweight iso-
lation among OS components. RedLeaf extends Tock to sup-
port, e.g., end-to-end zero-copy drivers, and Theseus offloads
much of the semantic checking to Rust.
Scalable memory management systems. Much prior
work, as discussed earlier, focuses on proposing advanced
data structures (e.g., BONsAI tree [42]) and/or concurrency
control (e.g., scalable range locks [64]) to scale memory
management systems. Modern Linux follows the same ap-
proach [55]. However, as discussed in §2.2, such approaches
encounter challenges in simultaneously achieving high per-
formance and correctness.

NroS [33] forms an interesting comparison with
CorTENMM. Both works target multicore scalability and
enable verification [38]. A key difference is that NrOS uses a
general mechanism (i.e., node replication [39]) for memory

Figure 21. 8-threaded performance of other
PARSEC workloads. Results are normalized head, which consists of page tables (filled
to Linux. Higher is better.
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Figure 22. A comparison of memory over-

bars) and other metadata (empty bars).

management. Instead, CORTENMM proposes a general
principle (i.e., a single-level of abstraction) to guide the
design of a specific memory management system.

The K42 project [27, 65] develops a highly scalable micro-
kernel, offering compatibility with Linux. For memory man-
agement, K42 achieves scalability by minimizing shared state
and leveraging application-specific customization, which is
orthogonal to CORTENMM’s approach.

8 Conclusion

This paper presents CORTENMM, a high-performance mem-
ory management system offering strong correctness guaran-
tees, thereby overcoming both long-standing challenges in
prior designs. Our key insight is that both challenges stem
from the extra complexity incurred by software-level abstrac-
tion (e.g., VMA trees in Linux), which is no longer necessary
for modern MMUs that uniformly use multi-level page tables.
Using this insight, CORTENMM eliminates the software-level
abstraction, achieving sweeping simplicity. Building on this,
CoRTENMM proposes a transactional interface with locking
protocols to program the MMU. The locking protocols avoid
unnecessary contentions on the software-level abstraction,
achieving high performance while maintaining atomicity
for the transactions. We formally verified the correctness of
the locking protocols and the basic functions in the trans-
actional interface, offering strong correctness guarantees.
Our evaluation shows that the formally verified CORTENMM
outperforms Linux by 1.2X to 26X on real-world benchmarks.
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