
This paper is included in the Proceedings of the
2025 USENIX Annual Technical Conference.

July 7–9, 2025 • Boston, MA, USA
ISBN 978-1-939133-48-9

Open access to the Proceedings of the
2025 USENIX Annual Technical Conference

is sponsored by

Asterinas: A Linux ABI-Compatible, Rust-Based
Framekernel OS with a Small and Sound TCB

Yuke Peng, SUSTech; Hongliang Tian, Ant Group; Junyang Zhang and Ruihan Li,
Peking University and Zhongguancun Laboratory; Chengjun Chen and

Jianfeng Jiang, Ant Group; Jinyi Xian, SUSTech; Xiaolin Wang, Chenren Xu,
Diyu Zhou, and Yingwei Luo, Peking University and Zhongguancun Laboratory;

Shoumeng Yan, Ant Group; Yinqian Zhang, SUSTech
https://www.usenix.org/conference/atc25/presentation/peng-yuke

ASTERINAS: A Linux ABI-Compatible, Rust-Based Framekernel OS
with a Small and Sound TCB

Yuke Peng1,∗, Hongliang Tian2,∗, Junyang Zhang3,4, Ruihan Li3,4, Chengjun Chen2,
Jianfeng Jiang2, Jinyi Xian1, Xiaolin Wang3,4, Chenren Xu3,4, Diyu Zhou3,4,

Yingwei Luo3,4,†, Shoumeng Yan2,†, Yinqian Zhang1,†

1SUSTech 2Ant Group 3Peking University 4Zhongguancun Laboratory

Abstract
How can one build a feature-rich, general-purpose, Rust-
based operating system (OS) with a minimal and sound
Trusted Computing Base (TCB) for memory safety? Exist-
ing Rust-based OSes fall short due to their improper use of
unsafe Rust in kernel development. To address this chal-
lenge, we propose a novel OS architecture called framekernel
that realizes Rust’s full potential to achieve intra-kernel privi-
lege separation, ensuring TCB minimality and soundness. We
present OSTD, a streamlined framework for safe Rust OS de-
velopment, and ASTERINAS, a Linux ABI-compatible framek-
ernel OS implemented entirely in safe Rust using OSTD. Sup-
porting over 210 Linux system calls, ASTERINAS delivers per-
formance on par with Linux, while maintaining a minimized,
memory-safety TCB of only about 14.0% of the codebase.
These results underscore the practicality and benefits of the
framekernel architecture in building safe and efficient OSes.

1 Introduction

Despite three decades of research into defending against
memory safety bugs in operating systems (OSes) written in
C, achieving true memory safety remains elusive. This was
starkly demonstrated by the recent CrowdStrike outage [11],
where millions of Windows PCs crashed due to an out-of-
bounds memory access in a faulty driver. It is estimated that
60-70% of security vulnerabilities in system software written
in C stem from memory safety issues [30].

In recent years, as the Rust programming language ma-
tures and becomes popular, the development of Rust-based,
memory-safe OSes has gained momentum. Rust offers mem-
ory safety guarantees through innovative language features
such as ownership, borrowing, and lifetimes, enabling safe
memory management without relying on garbage collection.
Many now see Rust as a potential successor to C and C++

∗Co-first authors.
†Co-corresponding authors: Yinqian Zhang (yinqianz@acm.org);

Shoumeng Yan (shoumeng.ysm@antgroup.com); Yingwei Luo
(lyw@pku.edu.cn).

Table 1: The unsafe keyword is widely utilized in the crates
(or kernel modules) of existing Rust-based OSes. The statis-
tics were derived from an analysis of the latest source code of
these OSes at the time of writing.

Rust-based OSes Linux Tock RedLeaf Theseus

Unsafe-utilizing crates 6 / 111 91 / 98 36 / 58 54 / 171
(55%) (93%) (62%) (32%)

1 This includes the RFL crate and 10 notable Rust-written kernel modules [3].

as the dominant systems programming language. With the
endorsement of Linus Torvalds, the Linux kernel has officially
adopted Rust as its second programming language [18] and
integrated the Rust for Linux [41] (RFL) project to facilitate
writing "leaf" kernel modules in Rust. Additionally, new OS
kernels like Tock [38], RedLeaf [49], and Theseus [16] are
built from the ground up using Rust, further demonstrating
Rust’s potential in this domain.

While adopting Rust is a significant step toward achieving
kernel memory safety, this is insufficient on its own since
Rust-based OSes must include unsafe Rust code. The safety
of the kinds of low-level controls required by kernel pro-
gramming cannot be statically verified by the Rust compiler
and thus is only allowed by Rust within special code blocks
marked by the unsafe keyword. Despite the Rust language
team dedicating an entire book [25] to the “dark arts of un-
safe Rust”, developers are still prone to misusing it, and the
RustSec Advisory Database has recorded hundreds of bugs
stemming from unsafe misuse [60].

To mitigate the risks associated with unsafe in Rust, two
widely accepted best practices have emerged [12]: (1) use
unsafe sparingly and (2) encapsulate unsafe code within
safe abstractions. However, we have found that existing Rust-
based OS kernels often fall short of these standards. Unsafe
Rust code permeates a significant portion of a Rust-based
OS. We observe that unsafe-utilizing crates make up 55%,
93%, 62%, and 32% of all crates in Linux, Tock, RedLeaf,
and Theseus, respectively (as shown in Table 1). Although

USENIX Association 2025 USENIX Annual Technical Conference 307

kernel developers generally view unsafe as a “necessary
evil”, we question whether such widespread use of unsafe is
truly necessary. In particular, we challenge the necessity of
unsafe in device drivers (as seen in all existing Rust-based
OSes), which account for the majority of the codebase of a
mature OS (70% in Linux [17]). Details about the pitfalls of
unsafe handling in existing Rust OSes will be present in §2.

Given the limitations of prior work, we pose the question:
is it possible to build a feature-rich, general-purpose, Rust-
based OS kernel almost entirely in safe Rust? We introduce
framekernel (§3), a novel OS architecture designed to achieve
a minimal and sound TCB for a Rust-based OS. In the framek-
ernel architecture, the entire OS resides in a single address
space (as in a monolithic kernel) and is implemented in Rust.
The kernel is logically divided into two parts: the privileged
OS framework (akin to a microkernel) and the de-privileged
OS services. Only the privileged framework is allowed to
use unsafe, while the de-privileged services must be written
in safe Rust completely. As the TCB, the privileged frame-
work encapsulates all low-level, hardware-oriented unsafe
operations behind safe APIs. Using these safe APIs, the de-
privileged OS services can implement all kinds of OS func-
tionalities, including device drivers. A framekernel minimizes
the TCB size without incurring extra overheads due to hard-
ware isolation. Thus, we claim that a framekernel combines
the benefits of both a monolithic kernel and a microkernel
(see Figure 1).

We enforce this language-based, intra-kernel privilege sep-
aration by systematically identifying sensitive OS resources,
namely those that can be mis-programmed or misused to
compromise memory safety – even with safe Rust. Thus, the
design principle of a framekernel is to keep sensitive OS re-
sources within the privileged framework for soundness, while
delegating insensitive OS resources to the de-privileged OS
services for minimality.

To realize the vision of framekernels, we develop
OSTD (§4), the privileged OS framework required by a
framekernel. OSTD provides a small yet expressive set of
safe OS development abstractions, covering safe user-kernel
interactions, safe kernel logic, and safe kernel-peripheral inter-
actions. Of particular note is the untyped memory abstraction,
which addresses the challenge of safely handling externally-
modifiable memory (e.g., MMIO or DMA-capable memory)
– a longstanding obstacle in safe driver development. In ad-
dition, we introduce safe policy injection, a technique that
separates potentially complex "policy" components (e.g., task
schedulers, page allocators, and slab allocators) from the
core "mechanisms" of OSTD, thus containing the growth of
OSTD’s complexity over time. Furthermore, we define a set
of key safety invariants that collectively ensure the soundness
of OSTD’s privilege separation.

To demonstrate the practicality and benefits of frameker-
nels, we develop ASTERINAS (§5), a Linux ABI–compatible
framekernel built on OSTD. ASTERINAS implements a rich

App App App

TCB Non-TCB Slow path (e.g., syscall) Fast path (e.g., func call)

Monolithic kernel Microkernel Framekernel

Figure 1: A framekernel combines the speed of a monolithic
kernel and the security of a microkernel. The memory-safety
TCB of a framekernel is reduced to the privileged OS frame-
work (akin to a microkernel) without any communication
overheads due to extra hardware-based isolation (similar to a
monolithic kernel). We depict the TCB portion of a frameker-
nel as a “frame” to highlight the fact all low-level interactions
of non-TCB with the hardware (beneath the “frame”) and the
user space (above the “frame”) is mediated by the TCB.

subset of Linux functionality: it supports over 210 Linux sys-
tem calls, multiple file systems and socket types, and a variety
of peripherals (e.g., disks and NICs). All these features are
written in safe Rust, leveraging OSTD’s APIs. ASTERINAS
has been under development for three years. The repository
of ASTERINAS and OSTD is open source [1, 2], containing
over 100K lines of Rust code contributed by more than 50
individuals.

We conduct a thorough evaluation (§6) of ASTERINAS and
OSTD across three dimensions: performance, TCB size, and
soundness. ASTERINAS delivers performance on par with
Linux: on LMbench, a syscall-intensive microbenchmark,
ASTERINAS achieves a mean normalized performance score
of 1.08 (relative to Linux, higher is better); for three I/O-
intensive applications, Nginx, Redis, and SQLite, it delivers a
normalized performance of 1.17, 1.31, and 0.85, respectively.
The framekernel design also yields a lean TCB: ASTERINAS’s
TCB accounts for just 14.0% of its codebase, versus 43.8%
in Tock, 62.4% in Theseus, and 66.1% in RedLeaf. Finally,
to strengthen our confidence in OSTD’s soundness, we de-
velop KERNMIRI, a retrofitted version of Miri [48] for Rust
OSes, which is used to detect potential safety issues in OSTD
systematically.

Contributions. In summary, this paper makes the following
contributions:

• We propose framekernel, a novel OS architecture that com-
bines the benefits of both monolithic and microkernels by
enforcing Rust-based intra-kernel privilege separation.
• We develop OSTD, a small and sound OS framework to
facilitate OS development in safe Rust.
• We develop ASTERINAS, a highly-optimized, Linux ABI-
compatible OS based on OSTD.

308 2025 USENIX Annual Technical Conference USENIX Association

• We conduct extensive evaluations to show the performance,
TCB size, and safety of both ASTERINAS and OSTD.

2 Background and Motivation

2.1 The Rusty Way to Safety

Rust is an efficient system programming language that offers
strong guarantees for memory, type, and thread safety without
compromising runtime performance, thanks to its strong type
system and unique ownership model.

Ownership, borrowing, and lifetime. In Rust’s ownership
model, each value has a single owning variable, and the
value’s lifetime is tied to the owner’s scope [10]. When the
owner goes out of scope, the value is dropped. Ownership
can be borrowed through references, subject to lifetime con-
straints enforced by the compile-time borrow checker.

Type system. The Rust compiler implements a tailored type
system coupled with comprehensive compile-time checks [7,
9]. Utilizing type information, the compiler ensures that all ac-
cesses occur within valid lifetimes, generates correct memory
offsets, and performs bounds checking, thereby guaranteeing
both temporal and spatial memory safety.

Unsafe Rust. To offer additional expressive power, Rust pro-
vides the unsafe keyword, enabling programmers to bypass
compile-time checks and thus shifting the responsibility for
ensuring safety to those using unsafe code blocks [8].

Undefined behaviors. Undefined behaviors (UBs) in Rust
refers to operations that compromise the language’s correct-
ness and safety guarantees, including memory safety, thread
safety, and type safety. The Rust Reference book enumer-
ates common UBs [6], e.g., data races, memory access based
on dangling or misaligned pointers, out-of-bound memory
access, breaking the pointer aliasing rules, and mutating im-
mutable bytes. However, this list is neither comprehensive nor
precise due to Rust’s lack of a formalized specification. The
Rust language team maintains an official UB detection tool
called Miri [48], which, as part of the Rust toolchain, serves
as a de-facto executable standard for UBs. Although Miri
can effectively detect UBs in standard Rust applications, Miri
is not applicable to Rust-based OSes as its design does not
take into account the needs of low-level system programming,
particularly in areas of memory management and hardware
interaction. This work aims at systematic identification and
prevention of UBs in the context of Rust OSes.

2.2 Rustification of Mainstream OSes

The efficiency and safety of Rust make it an attractive choice
for developing OSes, leading to several mainstream OSes [29,
41, 54] integrating Rust into their codebases. The Rust for
Linux (RFL) project [41] stands out as a prominent example.

RFL aims at establishing Rust as the second official lan-
guage of the Linux kernel, allowing developers to write “leaf”
kernel modules in safe Rust. Officially merged into Linux in
2022, RFL has laid the groundwork for Rust integration by
2024 [40]. Notably, three Rust-written device drivers, albeit
basic, have already been added to the kernel tree [39].

Despite this progress, the unsafe nature of Linux remains.
By design, RFL has to offer safe Rust abstractions over
Linux’s extensive legacy C APIs, resulting in substantial use
of unsafe Rust. A recent study [39] notes that RFL already
has 19K lines of Rust code upstream, with an additional 112K
lines staged for upstream inclusion. A great portion of RFL is
devoted to unsafe Rust code that interacts with the legacy C
APIs. As RFL expands to cover more subsystems and their
C APIs, we expect its codebase to grow to hundreds of thou-
sands of lines. Therefore, the TCB size of RFL is substantial,
even not considering Linux’s huge C core and the countless
C kernel modules around it.

Lesson Learned: Constructing safe Rust abstractions on
a legacy monolithic kernel inevitably requires a substantial
use of unsafe Rust.

In addition to the inflated TCB size, the burden of a huge
legacy codebase - its status quo and established philosophy -
constrains the effectiveness of Rust and the soundness of RFL.
This constraint leaves known soundness vulnerabilities unre-
solved in RFL. For example, Rust explicitly excludes memory
leaks from its memory safety guarantees, permitting objects to
be forgotten. However, it was discovered that forgetting RFL’s
mutex guards can trigger use-after-free vulnerabilities [55].
This vulnerability arises from conflicting API contracts be-
tween C and Rust regarding mutex unlocking obligations, so
neither side is willing or capable to fix it. Another example
of a soundness issue stems from Linux’s (and by extension
RFL’s) tolerance for sleeping in atomic contexts such as spin-
lock or RCU-lock held regions. Sleep-in-atomic-context bugs
may cause data races in RCU-protected memory accesses, un-
dermining Rust API safety guarantees [31]. These unresolved
soundness issues reflect the Linux community’s traditional
value of "pragmatism over safety" [31], creating fundamental
tensions with Rust’s security-first paradigm.

Lesson Learned: Achieving sound memory safety re-
quires a clean-slate OS that prioritizes safety above all else.

2.3 Clean-Slate Rust OSes
Clean-slate Rust OSes like Tock [38], RedLeaf [49], and

Theseus [16] strive to fully leverage Rust’s features to im-
prove OS safety and reliability. However, they face a notable
limitation: inadequate support for safe driver development.
As shown in Table 2, device drivers in these systems fre-
quently rely on unsafe code to manage low-level resources,
such as raw data buffers, MMIO, I/O ports, and DMA regions.
Given that drivers typically constitute the largest portion of

USENIX Association 2025 USENIX Annual Technical Conference 309

Table 2: Representative unsafe Rust code pattern in drivers
Resource access

within unsafe blocks
Resource acquisition
within unsafe blocks

Tock // chips/nrf52:
buf[idx] = *byte_ptr

// chips/nrf52:
StaticRef::new(ptr)

RedLeaf // lib/devices/ixgbe:
ptr::read_volatile(addr)

// lib/devices/tpm:
MmioAddr::new(base,len)

Theseus // kernel/pci:
pci_port.write(val)

// kernel/ixgbe:
Box::from_raw(ptr)

an OS codebase, extensive use of unsafe code significantly
heightens the risk of memory safety vulnerabilities.

Lesson Learned: Safe driver development requires safe
abstractions for acquiring and accessing low-level system
resources.

Among the three Rust OSes, Theseus minimizes unsafe
code through its MappedPages abstraction, which represents
the exclusive ownership of a virtually-contiguous memory
region backed by some exclusively-owned physical frames.
This exclusiveness alone (seemingly) preserves the safety of
Rust references (e.g., &T) borrowed from that range. However,
this design overlooks sensitive or externally-modifiable mem-
ory. For example, using MappedPages to modify the sensitive
memory of Local APIC may cause unpredictable CPU behav-
ior (e.g., sending an IPI that resets a CPU). Similarly, Theseus
drivers create Rust references (&T) to MMIO device memory,
an unsound practice since such references assume no external
modifications, which hardware may violate.

Lesson Learned: Rust OSes must develop safe abstrac-
tions for memory that is subject to external modifications,
such as hardware, user programs, or DMA.

Finally, while language-level UBs are effectively addressed
by Rust’s safety guarantees, UBs stemming from execution
environments or CPU architectures remain unresolved in exist-
ing Rust-based OSes. For example, a malicious device could
corrupt kernel memory via DMA [44] or spoof interrupts to
manipulate CPU trap handlers [63]. Similarly, a stack over-
flow could compromise the execution environment—an issue
beyond the detection capabilities of safe Rust.

Lesson Learned: Rust OSes should safeguard against
UBs not only at the language level but also at the architec-
tural and environmental levels.

3 Framekernel Architecture

We introduce framekernel, a novel OS architecture that com-
bines the benefits of both monolithic kernels and microkernels
by fully leveraging the modern safe system language of Rust.
In a framekernel OS, the entire OS kernel resides within a
single address space, akin to a monolithic kernel, and is imple-
mented in Rust. The kernel is logically divided into two parts:

the privileged OS framework (similar to a microkernel) and
the de-privileged OS services. Only the privileged framework
may use Rust’s unsafe features, while the de-privileged ser-
vices are built entirely in safe Rust. The privileged framework
encapsulates low-level, hardware-oriented unsafe operations
into safe APIs, using which the de-privileged services imple-
ment most OS functionalities, including drivers, in safe Rust.
Like a monolithic kernel, all components within a frameker-
nel communicate efficiently (e.g., via function calls or shared
memory). By restricting the privileged framework to a min-
imal set of functionalities, framekernels, like microkernels,
reduce the size of the TCB, thereby enhancing safety, security,
and reliability.

Design philosophy. At the heart of the framekernel archi-
tecture is intra-kernel privilege separation: although OS ser-
vices operate in privileged CPU mode, their behaviors are
constrained by safe Rust and the privileged framework, main-
taining their de-privileged status. Only flaws within the privi-
leged framework can jeopardize the kernel’s memory safety.
This intra-kernel privilege separation must uphold two key
properties: soundness and minimality.

Soundness: The OS framework guarantees the absence
of UBs under all circumstances, irrespective of interactions
with OS services, user code, or peripheral devices.

This property aims to prevent all forms of UBs, which may
originate at three levels (from high to low). First, language-
level UBs in Rust are described in §2.1. Second, environment-
level UBs arise when the code, stack, or heap is corrupted.
Programming languages have implicit assumptions about their
execution environments; UB occurs if those assumptions are
compromised. Third, architecture-level UBs stem from in-
correct use of CPU or hardware devices, such as improperly
saving/restoring CPU registers, misconfiguring page tables,
or allowing peripheral DMA to corrupt memory.

Minimality: A component is tolerated inside the OS
framework only if moving it outside would prevent the im-
plementation of OS services’ required functionality or com-
promise soundness of the framework.

This property focuses on minimizing the principal compo-
nent of the runtime TCB responsible for kernel memory safety.
Naturally, the whole TCB extends beyond the OS framework
itself, also including the Rust toolchain, the Rust core libraries,
bootloader, and firmware involved in loading a framekernel,
as well as the CPU plus some core devices (e.g., interrupt
controller and IOMMU). The software and hardware outside
the TCB, including the safe OS services, user-space programs,
and peripheral devices (e.g., disks, NICs, and GPUs), are not
trusted.

Towards effective privilege separation. Realizing intra-
kernel privilege separation prompts a key question: What
must stay inside the framework (for soundness), and what can
be moved outside (for minimality)?

310 2025 USENIX Annual Technical Conference USENIX Association

CPU

Registers

Traps

MMU

Memory

Sensitive Memory

Insensitive Memory

Devices

Peripheral Devices

Core Devices

User-Mode Registers

Kernel-Mode Registers

User-Mode Traps

Kernel-Mode Traps
User Mappings

Kernel Mappings

Kernel Stack

Kernel Heap

Peripheral MMIO

Peripheral PIO

Interrupt Controller

IOMMU

Tasks

Heap Objects

Untyped Memory

Peripheral Interrupts

DMA Mappings

User Space

Kernel Logic

Peripheral Drivers

Low-level, sensitive OS resources High-level, insensitive OS resources

The OS framework The OS Services

Figure 2: A blueprint for framekernel construction in a re-
source-centric view. The nodes represent OS resources, while
the edges depict classification and encapsulation. The concept
of untyped memory will be introduced in §4.2.

To answer this, we view framekernel construction from a
resource-centric perspective, as shown in Figure 2. Funda-
mentally, an OS manages three classes of resources: CPU,
memory, and devices. At first glance, these resources are all
sensitive because the kernel code could misuse them (even in
safe Rust) and break memory safety. However, deeper inspec-
tion shows that some subsets of these resources are actually
insensitive. Thus, we must keep sensitive resources inside the
framework (for soundness) and should move insensitive ones
outside (for minimality).

All three classes of fundamental resources can be split
into sensitive and insensitive subsets. CPU resources involve
kernel-mode and user-mode control; the former is considered
sensitive, while the latter (e.g., user-mode registers, user-mode
traps) is insensitive because it cannot directly undermine ker-
nel state. Furthermore, the user virtual address space is in-
sensitive as manipulating the user virtual memory does not
affect kernel memory safety. Memory resources include sen-
sitive memory used for the kernel’s code, stack, heap, and
page tables, whereas memory dedicated to untrusted user pro-
cesses or devices is insensitive because kernel safety does
not depend on its integrity. Devices present a similar division,
as core devices (e.g., APIC, IOMMU) are sensitive due to
their machine-wide control, but peripheral devices (e.g., NICs,
GPUs) are generally insensitive; a misconfigured core device
can compromise the entire kernel, but failures in a peripheral
device are typically confined to that device itself.

These observations inform a blueprint for framekernel con-
struction (Figure 2). The blueprint classifies OS resources into
sensitive and insensitive ones at a fine granularity, with low-
level, sensitive ones hidden inside the privileged OS frame-

Task Context

Handle system calls

Execute in the user space until a trap

Parse system call arguments

UserMode

UserContext

VmSpace

Task

OSTD (TCB)
Manages

the context

Uses

Copy user data from the user space

Handle the system callAnd more APIs …

OSTD client (Non-TCB)

Uses

Uses

Uses

Figure 3: An example of OSTD APIs: system call handling

work or encapsulated into high-level, insensitive ones. The
net result is that the privileged OS framework only exposes
to the de-privileged OS services a small set of insensitive
resources that is sufficient to support the three primary needs
of safe OS development: (1) safe user-kernel interactions, (2)
safe kernel logic, and (3) safe kernel-peripheral interactions.
This blueprint guides the design of OSTD.

4 OSTD

In this section, we present OSTD, which is our implementation
of the framework required by a framekernel. First, we provide
an overview of OSTD’s APIs. Then, we describe how OSTD
manages physical memory pages (frames), a key foundation
of OSTD’s soundness. Next, we define the key safety invari-
ants for OSTD to achieve the language-based, intra-kernel
privilege separation. Lastly, we introduce the technique of
safe policy injection, which confines the complexity growth
of OSTD as it evolves.

4.1 Expressive APIs

OSTD provides a small set of expressive abstractions to meet
the needs of safe OS development. These abstractions are im-
plemented as OSTD APIs, which are utilized by OSTD clients
– safe kernel code that interacts with the OSTD. For safe user-
kernel interactions, it allows an OSTD client to jump into
the user space and execute until a trap occurs (UserMode),
manipulate user-mode CPU registers (UserContext), and
manage user address spaces (VmSpace). For safe kernel logic,
it includes synchronization primitives (e.g., SpinLock, Rcu,
Mutex, WaitQueue, and CpuLocal) and efficient data collec-
tion types (e.g., LinkedList and RbTree). For safe kernel-
peripheral interactions, it offers mechanisms to register in-
terrupt handlers (IrqLine), perform MMIO and PIO (IoMem
and IoPort), and create coherent or streaming DMA map-
pings (DmaCoherent and DmaStream). All three of these OS
development aspects may allocate and access physical pages,
referred to as frames, via Frame (one frame) or Segment
(multiple contiguous frames).

USENIX Association 2025 USENIX Annual Technical Conference 311

We illustrate a simplified workflow of how system calls
may be handled safely with OSTD in Figure 3. Another exam-
ple on how device data is requested with OSTD is shown in
Figure 10 in Appendix A. For a more concrete example, see
our sample project “Write a Hello World OS Kernel in ∼100
Lines of Safe Rust with OSTD” [23].

4.2 Frame Management
OSTD employs a frame metadata system to track the state
of each page frame, including a reference count and a cus-
tomizable metadata field. All per-frame metadata are stored
in a large static array, which is allocated and initialized in an
early bootstrap phase. The reference count equals the total
number of Frame and Segment instances that refer to that
frame, enabling OSTD to manage frame lifetimes correctly.

Inv. 1: Any newly-allocated Frame or Segment originates
from currently unused memory.

OSTD further supports custom per-frame metadata by tak-
ing a type parameter M in Frame<M> (or Segment<M>). The
client can attach a metadata object of M to a Frame<M> object,
enabling features like a page cache to efficiently maintain
some extra per-frame states (e.g., the status of data synchro-
nization between memory and disk). This mechanism is also
used in page allocators and slab allocators (see §4.4).

Both Frame and Segment can represent either sensitive
or insensitive memory. Internally, OSTD uses them to al-
locate sensitive memory for kernel resources such as page
tables, stacks, or slabs. Externally, an OSTD client can re-
quest a special form of insensitive memory called untyped
memory with UFrame<M> = Frame<M: AnyUFrameMeta>
or USegment<M> = Segment<M: AnyUFrameMeta>, where
the trait AnyUFrameMeta marks metadata types suitable for
untyped memory usage.

Untyped memory deals with the fact that externally modifi-
able memory (e.g., user-mapped or DMA-capable memory)
cannot uphold the strong guarantees of Rust references or the
type safety of arbitrary Rust types. As such, we design UFrame
(or USegment) to have a read-write style interface [24] that
only permits copying plain old data (POD) [4] from or into
it. A POD type (e.g., u32) can hold a value of any bit pattern,
without invalidating any Rust invariants.

4.3 Privilege Separation
Intra-kernel privilege separation requires preventing all sensi-
tive resources from being tampered with by non-TCB entities,
including safe clients, user programs, and peripheral devices.
OSTD achieves this by enforcing the following key invariants.

Inv. 2: Kernel-mode CPU states cannot be tampered with by
OSTD clients.

To expose only user-mode CPU operations to clients, OSTD
provides UserMode, UserContext, and VmSpace. The first

two handle traps and registers at user privilege level, while
the third manages user-mode virtual memory. Kernel-mode
registers are hidden, and only safe portion of user-mode CPU
registers are accessible. For instance, on x86, UserContext
exposes only the non-sensitive subset of RFLAGS, excluding
bits like IF or IOPL that control interrupts or I/O privilege.

Inv. 3: Kernel-mode CPU states cannot be tampered with by
peripheral devices.

On x86 hardware, devices can spoof exceptions, traps, or
inter-processor interrupts [63]. To protect against such attacks,
OSTD configures the IOMMU to enable interrupt remapping,
preventing rogue devices from influencing kernel control flow.

Inv. 4: Sensitive memory cannot be tampered with by OSTD
clients.

All Frames or Segments allocated by OSTD clients origi-
nate from insensitive physical memory. Sensitive pages, such
as those used for kernel code, stacks, or page tables, remain
fully within OSTD’s control.

Each Task’s stack includes a guard page to detect stack
overflows. If the stack pointer touches the guard page, a page
fault is triggered, preventing further execution and thwarting
potential malicious behavior. Additionally, the OSTD-based
OS enforces a compile-time stack usage analysis, ensuring
each function’s stack frame remains smaller than the guard
page. This prevents malicious attempts to bypass the guard
page and exploit stack overflows.

Inv. 5: Sensitive memory cannot be tampered with by user
programs.

User-mode mappings are created through VmSpace, which
can only take UFrame or USegment as inputs. This design
rules out exposing sensitive memory to user space because
untyped memory are, by definition, insensitive.

Inv. 6: Sensitive memory (including I/O memory) cannot be
tampered with by peripheral devices.

OSTD leverages IOMMU to prevent peripheral devices
from writing to unauthorized physical regions. Initially, no
part of physical memory is DMA-accessible. Drivers can
create DMA mappings (DmaStream or DmaCoherent) only
over untyped memory (UFrame or USegment), so sensitive
regions stay protected.

Inv. 7: Sensitive I/O memory or ports cannot be tampered
with by OSTD clients.

Clients interact with MMIO and PIO through IoMem
and IoPort. OSTD uses information from the architecture,
firmware (e.g., ACPI tables on x86), and core device drivers
to label ranges of I/O memory and ports as either sensitive
or insensitive. IoMem and IoPort can only be instantiated for
insensitive regions, preventing accidental or malicious misuse
of sensitive I/O registers.

312 2025 USENIX Annual Technical Conference USENIX Association

Table 3: Increased complexities in some Linux components
Linux
Components

Early Version
(2.1.23, 1997)

Latest Version
(6.12.0, 2024)

Task scheduler 1.6 KLoC 27.2 KLoC 17×
Slab allocator 1.6 KLoC 8.7 KLoC 6×
Frame allocator 1.2 KLoC 7.1 KLoC 6×

4.4 Safe Policy Injection

One’s confidence in the correctness of any safe abstraction
ultimately hinges on the size and complexity of its TCB. In
this section, we explain how to contain OSTD—even if its
implementation adopts increasingly sophisticated strategies
and policies over time.

Specifically, OSTD consists of the following components,
each of which makes decisions based on particular strategies
or policies: (1) Task scheduler determines which task to
run next, (2) Frame allocator decides how to allocate large
chunks of memory, and (3) Slab allocator decides how to
allocate smaller chunks of memory. These components can
grow significantly when equipped with advanced features. For
instance, their counterparts in Linux have grown in size and
sophistication over the years, as summarized in Table 3.

Intuitively, a TCB should contain only mechanisms rather
than policies for minimality. We therefore propose safe policy
injection, a technique that removes complex policies from
a Rust TCB without compromising functionality, efficiency,
or soundness. To apply the technique, a developer identifies
components inside the TCB that might use complex strate-
gies or policies, then determines whether a complete policy
implementation can be written in safe Rust. If it can, the de-
veloper designs abstractions for acceptable policies plus APIs
to register those policies, a process we refer to as “injection”.

Although the idea of safe policy injection appears simple,
ensuring soundness can be challenging because these policies
affect the behaviors of TCB code. For example, a safe-but-
buggy scheduler could inadvertently schedule the same task
on two CPUs at once – a catastrophic mistake for memory
safety. Similarly, the choice of which memory page or slot to
allocate next directly affects memory safety. All mainstream
OSes include frame and slab allocators within their TCBs for
precisely these reasons. The rest of this subsection describes
how we overcome such challenges.

4.4.1 Task Scheduler

Our goal is to support advanced schedulers, such as Linux’s
Completely Fair Scheduler (CFS) [5], atop OSTD. We in-
troduce to OSTD two new traits: Scheduler and RunQueue.
Their APIs are summarized in Table 4. A type implement-
ing Scheduler should be registered once at an early stage of
kernel initialization (when no tasks exist). Whenever a task
becomes runnable (e.g., is spawned or woken), OSTD hands

Table 4: Select APIs for task scheduler injection. Scheduler
represents a task scheduler, and each CPU’s local run queue
is represented by RunQueue.

APIs Descriptions

Scheduler::enqueue(&self, task) Enqueue a task
Scheduler::local_rq_with(&self,
closure)

Access to the local run
queue with a closure

RunQueue::update_curr(&mut self) Update current task
RunQueue::pick_next(&mut self) Pick the next task
RunQueue::dequeue_curr(&mut self) Remove the current task

Table 5: Select APIs for frame allocator injection. The
FrameAlloc trait abstracts any injectable frame allocator.

APIs Descriptions

FrameAlloc::alloc(&self, layout) Allocate frames
FrameAlloc::dealloc(&self, addr, size) Deallocate frames
FrameAlloc::add_free_memory(&self,
addr, size)

Add a range of
usable frames

it over to the scheduler via the enqueue method.
We require schedulers to be SMP-friendly by keeping per-

CPU run queues, accessible through local_rq_with. To re-
place the current task, OSTD calls pick_next, and if the cur-
rent task becomes unrunnable (e.g., it sleeps), dequeue_curr
removes it from the queue. At each scheduling event (e.g.,
sleep, yield, or timer tick), OSTD invokes update_curr to
notify the scheduler, which can then update the scheduling
information about the current task.

For efficiency, the scheduler API takes ownership of
runnable tasks (Arc<Task>). Because the task objects are
clonable, they can be stored in advanced data structures (e.g.,
red-black trees) or moved between CPU queues for load bal-
ancing. Each task may also carry custom data (Box<dyn
Any>) for storing scheduling attributes, making these at-
tributes cheaply accessible.

The client-provided pick_next method could return an
invalid task. In particular, returning a task that is already
running on another CPU may lead to severe consequences, as
running one task on two CPUs corrupts its stack. We must
thus preserve this key invariant:

Inv. 8: A Task runs on at most one CPU at any given time.

To enforce this, OSTD gives each Task a private flag,
is_running, which is checked and set prior to a context
switch. After switching, the previous task will have its flag
cleared.

4.4.2 Frame Allocator

An injectable frame allocator is abstracted by the FrameAlloc
trait, whose APIs are shown in Table 5. During the
initialization phase, OSTD passes the information of all
usable physical memory to the injected frame alloca-

USENIX Association 2025 USENIX Annual Technical Conference 313

Table 6: Select APIs for slab allocator injection. A Slab rep-
resents one or more memory pages arranged into fixed-size
slots, with free slots represented by HeapSlot.

APIs Descriptions

Slab::new() Create a new slab
Slab::alloc(&self) Allocate a new HeapSlot
Slab::dealloc(&self, slot) Recycle a HeapSlot
HeapSlot::into_box(self, val) Convert into a heap object

tor (FrameAlloc::add_free_memory). Subsequently, when-
ever an OSTD client requests a new Frame (or Segment),
OSTD redirects the request to the injected allocator
(FrameAlloc::alloc), which returns the address of the al-
located memory. Conversely, when a Frame (or Segment)
is dropped and its reference count is reduced to zero, the
underlying frames will be returned to the injected allocator
(FrameAlloc::dealloc).

A Frame (or Segment) must be created out of a valid
and unused range of physical memory. But this safety pre-
condition may be violated by an injected frame allocator
due to potential logical bugs. To guard against such bugs,
OSTD only turns memory ranges obtained from the injected
allocator into Frames through a safe constructor method,
Frame::from_unused(addr, size), which enforces Inv. 1
by leveraging the frame metadata system (§4.2).

4.4.3 Slab Allocator

We now describe how OSTD supports a custom slab alloca-
tor [14, 15] and its injection as the heap allocator. A slab is
one or more contiguous pages partitioned into an array of
fixed-size slots [14]. Each slot can hold a single object of a
particular type or size. A slab cache pools these slots for rapid
allocation and release. Typically, a per-CPU free list tracks
empty slots, refilled from a global pool of slabs when needed.
If all slabs are full, new slabs are allocated from free pages.
Conversely, the allocator can free unused slabs to reclaim
memory. An OS typically manages multiple slab caches for
different slot sizes, all governed by a slab allocator.

We introduce two new abstractions in OSTD: Slab and
HeapSlot, whose APIs are summarized in Table 6. These
APIs perform type conversions critical to memory safety:
from an unused memory page to a slab (Slab::new), then to
a free slot (Slab::alloc), and ultimately to a heap object
(HeapSlot::into_box). With these abstractions, developers
can implement slab caches and the slab allocator in ASTERI-
NAS using only safe Rust.

These abstractions maintain some key invariants. For ex-
ample, a Slab owns its underlying pages, so dropping the
Slab should free those pages – unless some slots are still
occupied by active objects. To avoid use-after-free, each Slab
tracks the number of active HeapSlots it spawned. A panic is
triggered if a Slab is dropped while any slot remains active:

CPU, Memory, and Core Devices

Process IPC

TCP

Peripheral
Device
Drivers

SocketsFile
SystemsPage Cache

Virtual MemorySyscall &
fault

handlers Scheduling UDP

ASTERINAS (unsafe Rust forbidden)

OSTD (unsafe Rust allowed)

User-Mode CPU
Registers/Traps/Mappings

Untyped
Memory

Peripherals’
I/O Ports & MemTasks DMA

User ProcessUser ProcessUser Process

Peripheral
InterruptsHeap

Peripheral Devices

Figure 4: An overview of Asterinas.

Inv. 9: A HeapSlot or any object derived from it must not
outlive its parent Slab.

Additionally, when HeapSlot::into_box is called, the
method checks cheaply whether the slot’s address and size
can fit a requested object of type T:

Inv. 10: An object is created from a HeapSlot only if the
slot meets the object’s size and alignment requirements.

In practice, many kernel components rely on a global heap
rather than creating their own slab caches. OSTD allows in-
jecting a slab-based, global heap allocator, which can dispatch
each heap allocation to the appropriate slab cache.

Overall, the safe policy injection technique allows OSTD
to enjoy the performance advantage of advanced implementa-
tions without bloating its TCB size.

5 ASTERINAS

We develop ASTERINAS (see Figure 4), a framekernel-based
OS built on top of OSTD. ASTERINAS implements a sub-
stantial subset of Linux features, including virtual memory,
user processes, preemptive scheduling, IPC, a page cache, a
virtual file system, and sockets, providing over 210 system
calls. It supports various file systems (e.g., Ext2, exFAT32,
OverlayFS, RamFS, ProcFS, and SysFS), socket types (e.g.,
TCP, UDP, Unix, and Netlink), and devices (e.g., Virtio Block,
Virtio Network, Virtio Vsock, USB controller, and USB HID).
Two CPU architectures are supported: x86-64 (tier-1) and
RISC-V (tier-2). All the functionality is written in safe Rust
by leveraging OSTD’s APIs. ASTERINAS has been under de-
velopment for three years (see Figure 7). The repository of
ASTERINAS and OSTD is open-sourced [1, 2], contains over
100K lines of Rust contributed by over 50 individuals.

Towards smaller TCB. In pursuit of a smaller TCB, ASTER-
INAS (rather than OSTD) implements much of the OS infras-
tructure that Linux considers part of its core. For instance,
ASTERINAS manages all interrupt bottom halves, such as
softirq, tasklets, and work queues, by using an interrupt han-

314 2025 USENIX Annual Technical Conference USENIX Association

dling hook provided by OSTD. OSTD enforces “atomic mode”
to prevent client-provided callbacks from sleeping in interrupt
context. ASTERINAS also maintains system time, monotonic
time, and wall clocks by registering timer interrupts and read-
ing the timestamp counter (TSC) through OSTD.

ASTERINAS takes advantage of OSTD’s safe policy injec-
tion feature. It incorporates a Linux-style task scheduler with
multiple scheduling classes—including a real-time scheduler
and a rudimentary CFS [5]. ASTERINAS provides an efficient
and scalable buddy system frame allocator, with per-CPU
caching. ASTERINAS also features a slab allocator following
the original design [14]. Our primary focus has been establish-
ing the injection mechanism rather than extensively refining
each scheduling or allocation policy; we plan to continue
improving these components for greater maturity.
Performance optimization. Many performance bottlenecks
in ASTERINAS and OSTD have been identified and addressed.
Due to space constraints, we cannot cover every optimiza-
tion in detail. In many instances, we have adapted strategies
from Linux’s optimized C implementations to align with the
framekernel philosophy and the constraints of safe Rust.

One optimization in ASTERINAS is a pooling mecha-
nism for DMA-able memory regions (akin to persistent map-
ping [61]), which may be requested frequently by device
drivers. This approach minimizes the need for DMA mapping
setup, requiring it only during initialization, thereby preserv-
ing IOTLB entries and enhancing the hit rates for IOMMU.
In contrast, a dynamic mechanism would necessitate frequent
unmaps, leading to IOTLB invalidation and a subsequent per-
formance decline.

Thus far, our optimization efforts have been concentrated
on single-core systems. Ongoing work is focused on improv-
ing SMP scalability through the use of SMP-friendly locks
(e.g., RCU [45], MCS locks [35]) and the application of more
fine-grained locking mechanisms. In this paper, our evaluation
compares ASTERINAS directly with Linux in a single-core en-
vironment, with a comprehensive multi-core analysis planned
for future work.

6 Evaluation

6.1 Performance Evaluation
We evaluate the performance of ASTERINAS. The experi-
ments are performed on a machine with an Intel i7-10700 pro-
cessor, 32GB of memory, and an Intel SSDPEKNW512GB
solid state drive. The system software on the machine includes
Ubuntu 22.04 (Linux version 6.8.0) and QEMU 9.1.0.

For comparison with ASTERINAS, we use Linux kernel
version 5.15 as the baseline. Some Linux features that
are missing in ASTERINAS, including CPU mitigations
(mitigations=off) and huge pages (hugepages=0), are dis-
abled to ensure fairness. Without disabling CPU mitigations,
Linux’s performance would be affected considerably.

Both the Linux and ASTERINAS kernels are tested within
QEMU virtual machines (VMs) configured as follows: SMP
set to 1, machine type set to q35 with the kernel IRQ chip
in split mode, CPU specified as Icelake-Server, PCID dis-
abled, and x2APIC and KVM enabled. Each VM is attached
with a virtio-blk device (having a single queue with a length
of 64) and a virtio-net device (a tap device with vhost sup-
port enabled), which will be used for block and network I/O
benchmarks, respectively.

6.1.1 Micro-benchmarks

We run LMbench [46], a series of system call-intensive
microbenchmarks. Specifically, the benchmarks are classi-
fied into five categories: process-related (Proc), memory-
related (Mem), Inter-process communication-related (IPC),
filesystem-related (FS), and network-related benchmarks
(Net). The last column (Norm) of Table 7 shows the nor-
malized performance—for throughput it shows results of As-
terinas/Linux; for latency it shows results of Linux/Asterinas—
and hence higher results suggest better performance of AS-
TERINAS. ASTERINAS is evaluated with IOMMU enabled
and all reported results are averaged over ten runs of the
benchmarks.

As shown in Table 7, the geometric mean of the normalized
performance is 1.08, which means ASTERINAS slightly out-
performs Linux in more benchmarks. This result suggests that
ASTERINAS is comparable to Linux in performance, but does
not necessarily mean ASTERINAS is better optimized. As a
newly developed Rust kernel, ASTERINAS misses some of the
advanced features and configurations in Linux. For example,
in the network TCP tests, ASTERINAS uses the smoltcp [22]
library, which lacks congestion control, enabling TCP to oper-
ate at full speed and resulting in faster performance compared
to Linux. In the FS-related open and stat tests, Linux employs
RCU-walk to achieve faster filename lookup, an optimization
not implemented in ASTERINAS.

6.1.2 Macro-benchmarks

We evaluate ASTERINAS’s performance with popular I/O-
intensive applications, including Nginx (1.26.2), Redis
(7.0.15), and SQLite (3.46.1). The results in Figure 5 report
ASTERINAS’s performance with IOMMU enabled (default)
and disabled (for comparison).

• Nginx. We evaluate the throughput of Nginx using
ApacheBench [26] with a concurrency level of 32 and a total
of 200,000 requests. The results shown in Figure 5(a) indi-
cate that the throughput of Nginx is higher on ASTERINAS
(22,912 rps) than Linux (19,227 rps) when the requested file
size is 4096 bytes (19% higher). When the file size is 64
KiB, ASTERINAS’s throughput drops to 9,234 RPS, which is
close to Linux’s result. This drop may happen because AS-
TERINAS ’s sendfile implementation is less optimized—it

USENIX Association 2025 USENIX Annual Technical Conference 315

4KB 8KB 16KB 32KB 64KB
0

1

2

3

·104

File size

T
hr

ou
gh

pu
t(

rp
s)

Linux Asterinas Asterinas-no-IOMMU

(a) Nginx

SET GET LPUSH LPOP LRANGE600
0

1

2

·105

Operation

T
hr

ou
gh

pu
t(

rp
s)

Linux Asterinas Asterinas-no-IOMMU

(b) Redis

120 200 230 400 410
0

1

2

3

4

Test Number

L
at

en
cy

(s
)

Linux Asterinas Asterinas-no-IOMMU

(c) SQLite

Figure 5: I/O-intensive application benchmarks with Ngnix, Redis, and SQLite.

Table 7: System call-intensive LMbench microbenchmarks.
Command Unit Linux Asterinas Norm.1

Proc

lat_syscall null µs 0.050 0.066 ± 0.001 0.76
lat_ctx 18 µs 0.826 0.829 ± 0.019 1.00
lat_proc fork µs 59.20 57.46 ± 0.721 1.03
lat_proc exec µs 204.8 174.4 ± 2.156 1.17
lat_proc shell µs 319.3 294.3 ± 1.915 1.08

Mem
lat_pagefault µs 0.109 0.100 ± 0.002 1.09
lat_mmap 4m µs 19.4 16.80 ± 0.422 1.15
bw_mmap2256m MB/s 15405 13197 ± 186.7 0.86

IPC

lat_pipe µs 1.826 1.881 ± 0.009 0.97
bw_pipe MB/s 11133 14664 ± 1073 1.32
lat_fifo µs 1.825 1.938 ± 0.008 0.94
lat_unix µs 2.677 2.493 ± 0.023 1.07
bw_unix MB/s 7875 14183 ± 598.2 1.80

FS

lat_syscall open µs 0.611 0.740 ± 0.020 0.83
lat_syscall read µs 0.081 0.088 ± 0.002 0.92
lat_syscall write µs 0.065 0.080 ± 0.003 0.81
lat_syscall stat µs 0.299 0.400 ± 0.009 0.75
lat_syscall fstat µs 0.263 0.231 ± 0.004 1.14
bw_file_rd3512m MB/s 10238 9198 ± 44.25 0.90
lmdd(Ramfs->Ramfs) MB/s 3219 2973 ± 18.60 0.92
lmdd(Ramfs->Ext2) MB/s 2490 2612 ± 57.08 1.05
lmdd(Ext2->Ramfs) MB/s 3453 2962 ± 30.77 0.86
lmdd(Ext2->Ext2) MB/s 2017 2626 ± 68.94 1.30

Net:
Loop-
back

lat_udp µs 3.801 2.427 ± 0.009 1.57
lat_tcp µs 5.326 2.725 ± 0.016 1.95
bw_tcp 128 MB/s 280.0 356.5 ± 78.94 1.27
bw_tcp 64k MB/s 6216 7647 ± 321.5 1.23

Net:
VirtIO

lat_udp µs 15.03 11.49 ± 0.139 1.31
lat_tcp µs 16.75 12.94 ± 0.135 1.29
bw_tcp 128 MB/s 328.7 333.2 ± 5.141 1.01
bw_tcp 64k MB/s 1151 1116 ± 15.05 0.97

Mean 1.08
1 Normalized performance. For throughput, use Asterinas/Linux; for latency, use Linux/
Asterinas. The higher the better.
2 With mmap_only.
3 With io_only.

requires an extra copy to an intermediate buffer. For small
files (4 KiB), ASTERINAS performs better than Linux be-
cause it lacks congestion control (using the smoltcp crate).
However, as the file size increases, the overhead of redun-
dant copying outweighs this advantage, causing ASTERINAS
’s performance to fall behind Linux. The geometric mean
of all the normalized performances (ASTERINAS/ Linux) is
1.17.
• Redis. We use the official Redis benchmark tool [53],
which measures performance by executing a series of Redis
commands and recording the throughput. Figure 5(b) shows
a subset of representative commands, and the complete re-
sults can be found in Appendix B. The results indicate that
ASTERINAS outperforms Linux. For instance, the through-
put for GET operation on ASTERINAS is 218,670 rps, 40.2%
higher compared to 155,994 rps on Linux. This result aligns

Table 8: Overhead due to OSTD’s safety mechanism.

Operations Sources of
Safety Overheads

CPU Cycles

Overhead / Total

Segment::read_bytes (4KB) Boundary check 3/125(2.4%)
Segment::write_bytes (4KB) Boundary check 2/239(0.8%)
IoMem::read_once (4 bytes) Boundary check 170/10988(1.5%)
IoMem::write_once (4 bytes) Boundary check 166/10666(1.6%)
KernelStack::new Guard page creation 25/2950(0.8%)
Task::yield_now Running flag check 1/167(0.6%)
FrameAlloc::alloc (1 frame) Ownership check 12/180(6.7%)
Box::new (48 bytes) Ownership check 1/148(0.7%)

with our LMbench findings, where ASTERINAS outperforms
Linux for smaller packet sizes, as the Redis benchmark in-
volves small message sizes in its operations. The geometric
mean of all the normalized performance results is 1.31.
• SQLite. We utilize SQLite’s speedtest1 [51] as the bench-
marking tool. In the test, we set the base size to 1000 to
ensure data is written to the device (default is 100) and run
the tests on an Ext2 mount over a virtio-blk device. Due
to space limits, we only show representative results in Fig-
ure 5(c), whose test numbers are 120 (500000 unordered IN-
SERTS with one index/PK), 200 (VACUUM), 230 (100000
UPDATES, numeric BETWEEN, indexed), 400 (700000 RE-
PLACE ops on an IPK), and 410 (700000 SELECTS on an
IPK). The complete results are shown in Appendix C. The
geometric mean of all the normalized performances (Linux /
ASTERINAS) is 0.85.
In all these tests, ASTERINAS performs worse than Linux.
The Vacuum test (200) shows the worst case, reaching only
72% of Linux’s performance with IOMMU enabled. Once
the IOMMU is disabled, the ratio will become 77%. To un-
derstand the root causes of Vacuum test, we used Strace [58]
for performance diagnosis. The analysis revealed that Vac-
uum frequently makes pwrite64 calls for writing 4-byte
data. When disabling the SQLite journal, pwrite64 with
small data writes disappears, and ASTERINAS’ performance
increases to 80% and 83% of Linux’s performance with
IOMMU enabled and disabled, respectively. This analysis
shows that ASTERINAS could benefit from optimization
for both pwrite64 operations with small data writes and
IOMMU.

316 2025 USENIX Annual Technical Conference USENIX Association

Dynamic mapping Pooling - static mapping

Seq Read Seq Write
0

2,000

4,000

Operation

M
B

/s

(a) Block device bandwidth

128 65536
0

500

1,000

Message Size

M
B

/s

(b) Network device bandwidth

Figure 6: IOMMU overhead with different mechanism

6.1.3 Overhead due to Safety Checks

The overhead introduced by the OSTD’s safety mechanisms
does not prevent ASTERINAS’s performance from being com-
parable to a monolithic kernel. ASTERINAS has integrated
several safety mechanisms into its OSTD to ensure system
safety. To evaluate the cost of safety mechanisms, we directly
invoke the interfaces corresponding to these safety mecha-
nisms at the API level, measuring the CPU cycles required
with and without the safety checks. The results are presented
in Table 8. The "Allocate frame" test, which is related to the
Frame allocator injection, exhibits the highest overhead at
6.7%, while the overhead of all other tests remains below 3%.

6.1.4 IOMMU Optimization

One optimization of IOMMU using the pooling mechanism
leads to a significant performance gain. As shown in Figure 5,
the results indicate that ASTERINAS does not introduce signif-
icant overhead for Nginx, Redis, and SQLite (in most cases).
Both Nginx and Redis show almost no overhead, with the
largest overhead observed in the SPOP test of Redis at 2.3%.

However, SQLite exhibits higher overhead in some cases
(8.3%), primarily due to the incomplete pooling mechanism in
the block device driver compared to the network device driver.
Figure 6 further highlights the significance of pooling. We
evaluate the bandwidth of block devices using FIO [13] and
network devices using bw_tcp. Upon switching from polling
to a dynamic mechanism, both network and block devices
experienced considerable performance degradation.

6.2 TCB Evaluation
In this section, we evaluate the current TCB size of ASTERI-
NAS and estimate its growth as the codebase evolves.

6.2.1 TCB Comparison

To assess the efficacy of ASTERINAS’s implementation of the
minimality principle, we compare the TCB size of ASTERI-
NAS with RedLeaf [49], Theseus [16], and Tock [38].

Methodology. We employ a crate-level classification ap-
proach to evaluate the run-time TCBs of Rust-based OSes. In

Rust, crates serve as the primary units for organizing and dis-
tributing code, with no additional isolation mechanisms within
a crate. Consequently, a crate’s interface naturally forms a
trust boundary. So we consider a crate either belongs to the
TCB, implying it must be trusted for security, or is excluded
from the TCB, indicating it is secured by the Rust compiler.
We adhere to the following rules to determine whether a crate
is within the run-time TCB or not:

• Rule 1: The Rust toolchain is trusted. Consequently, crates
provided by the Rust toolchain itself, like alloc and core,
are not considered part of the run-time TCB.
• Rule 2: Crates containing unsafe code may potentially in-

troduce soundness bugs, and as a result, they are considered
part of the TCB.
• Rule 3: Crates that are dependencies of TCB crates should
also be part of the TCB. This is because even if a crate
doesn’t use unsafe at all and thus doesn’t introduce sound-
ness issues on its own, the correctness of its APIs can still
impact the soundness of the TCB crate that relies on it.

Since crates vary in size, evaluating the TCB size by count-
ing the number of crates would be too simplistic and inaccu-
rate. Therefore, a more refined metric is needed. However,
directly comparing lines of code across crates is not ideal,
as not all code within a crate is necessarily utilized during
runtime. This is especially true for third-party dependencies,
where often only a small fraction of the code is actually used
at runtime.

To address this, we introduce a metric called Linked Code
Size (LCS), which measures the number of lines of code that
are ultimately compiled and linked during the OS build.

We leverage the LLVM toolchain [42] to estimate the LCS
for each OS. Specifically, we measure the number of source
code lines that have corresponding statements in the generated
LLVM IRs after link-time optimization. The content of the
LLVM IR is closer to that of a binary file, primarily retaining
the IR corresponding to executable statements within func-
tions. It does not trace back to statements used for imports
or struct definitions, which are not directly executable during
runtime. This focus on executable IR provides a more accu-
rate measure of the code that is relevant to the TCB during
runtime operations.

Results. As illustrated in Table 9, the relative TCB size of
ASTERINAS is a mere 14.0%, which is notably lower than
that of other Rust-based OSes. While some OSes, such as
RedLeaf, enforce restrictions that permit only safe Rust in
specific crates, they still depend on numerous self-maintained
crates that utilize unsafe, leading to a substantial portion of
their code being part of the TCB (i.e., 66.1%).

Tock OS, being an embedded OS, is relatively lightweight,
and thus its TCB size is slightly better than the other two.
However, its TCB size (i.e., 43.8%) is still more than double
of ASTERINAS. These results clearly underscore the effective-
ness of the minimality principle that we adhere to.

USENIX Association 2025 USENIX Annual Technical Conference 317

Table 9: Comparison of TCB size
RedLeaf Theseus Tock1 Asterinas

Total (LoC) 25992 70468 6628 75285
TCB (LoC) 17182 43978 2903 10571

Relative TCB 66.1% 62.4% 43.8% 14.0%
1 Tock implementation of board nrf52840dk.

2022-07 2023-01 2023-07 2024-01 2024-07 2025-01 2025-07 2026-01 2026-07 2027-01
Date

0

100

200

300

K
Lo

C

OSTD (TCB)
Asterinas (non-TCB)

Figure 7: The codebase of ASTERINAS (non-TCB) has grown
faster than OSTD (TCB) and is expected to remain so.

6.2.2 TCB Evolution

ASTERINAS has been under development for three years. We
analyze and visualize the growth of its codebase (in KLoC).
As shown in Figure 7, ASTERINAS (non-TCB) has experi-
enced significant growth, while OSTD (TCB) has maintained
a slower, steadier expansion. Curve fitting indicates that the
TCB portion of the kernel will continue to grow in a con-
trolled manner. This aligns with prior research on Linux
codebase development [27, 57], which suggests that while
overall codebases grow super-linearly with increasing com-
plexity, core kernel functionality—excluding drivers—grows
sub-linearly [34].

6.3 Safety Evaluation
To evaluate the soundness of OSTD, we develop a testing tool
named KERNMIRI. This tool extends the official Rust UB
detection tool, Miri [48], to support core OS concepts such as
physical memory, page tables, etc. The overall architecture of
KERNMIRI is depicted in Figure 8. It retains Miri’s original
UB detection logic (represented by grey boxes and lines)
while introducing an additional 1,200 LoC to implement new
components (indicated by green boxes and lines).

As illustrated in Figure 8, KERNMIRI enhances Miri by
simulating physical memory and implementing a basic paging
system. These improvements enable KERNMIRI to accurately
interpret OS operations that demand fine-grained memory
management. Moreover, KERNMIRI introduces additional
shims to synchronize the OS state, which can be leveraged to
direct KERNMIRI to activate a page table at a specific address
or to inform KERNMIRI of changes in the state of a physical
page, such as transitions between typed and untyped states.

KERNMIRI interprets the execution of OSTD and all its
test cases. Following the workflow of OSTD’s unit testing,
KERNMIRI first interprets the initialization phase of OSTD
to synchronize the system’s initial memory state, and then

Native Address Management

KernMiri Shims

Paging System

Physical Memory Simulation

Interpreter Core Shims

Miri KernMiri

Internal Memory Operations

Rust MIR

UB Checkers

Figure 8: KERNMIRI, a UB detection tool for Rust OSes

Table 10: Coverage and efficiency of KERNMIRI on OSTD.

Modules # Tests Lines Unsafe Execution

Covered / Total Covered / Total Native KernMiri

dma 12 385/443 (87%) 8/8 (100%) 0.25s 1.22s
frame 28 634/649 (98%) 41/41 (100%) 0.21s 3.14s
heap 6 278/319 (87%) 6/6 (100%) 0.01s 0.31s
kspace 8 287/323 (89%) 9/9 (100%) 0.04s 0.93s
page_table 34 931/1032 (90%) 46/46 (100%) 1.23s 34.83s
io 29 358/371 (97%) 23/23 (100%) 0.16s 3.12s
vm_space 17 662/672 (99%) 10/10 (100%) 0.28s 6.95s
All 134 3535/3809 (93%) 145/145(100%) 2.18s 50.50s

executes each unit test of OSTD via interpretation. As such,
the coverage of KERNMIRI depends on the unit test cases
that have been developed for OSTD.

6.3.1 Coverage of KERNMIRI

We primarily use KERNMIRI to test and validate the mm mod-
ule of OSTD, which is closely related to memory safety. This
module also contains the majority of unsafe code in OSTD.
Table 10 summarizes the measured metrics for each submod-
ule of mm module separately, including the coverage of lines
of code (Column Line), coverage of unsafe blocks (Column
Unsafe) and interpreted execution time compared to native
execution (Column Execution).

The results suggest that, with in total 134 unit tests, KERN-
MIRI covers all instances of unsafe code and over 90% on
average of lines in all submodules. This confirms that the
majority of the OSTD’s memory operations is free of UBs.
Furthermore, the few detected instances of UB have been ad-
dressed, with a detailed discussion provided in Section 6.3.2.

In addition, as shown in the last column of Table 10, KERN-
MIRI’s interpreted execution takes approximately 25 times
longer than normal execution. While significantly higher, this
overhead is reasonable as a one-time cost for soundness eval-
uation. Thus, we conclude that KERNMIRI is a practical and
effective tool for validating the soundness of Rust-based op-
erating systems.

6.3.2 Case Studies

KERNMIRI has helped us detect several UBs that we would
not be able to catch using other methods, significantly im-

318 2025 USENIX Annual Technical Conference USENIX Association

/// Overview: 1 and 2 execute concurrently with 2 executing first. This
/// allows 1 to exchange successfully, leading to a race condition in
/// subsequent metadata modifications.

impl<M: FrameMeta> Frame<M> {
pub fn from_unused(paddr: Paddr, metadata: M) -> Self {

...
ref_count.compare_exchange(0, 1, Acquire, Relaxed).expect(...);
// Modify metadata.

}
}

impl<M: FrameMeta> Drop for Frame<M> {
fn drop(&mut self) {

let last_ref_cnt = self.ref_count().fetch_sub(1, Release);
if last_ref_cnt == 1 {// Modify metadata.}

}
}

1

2

(a) Data Race UB

/// Overview: The reference to the heap array is converted into a const
/// pointer for its first time pointer transition, yet the heap region
/// will be mutated later which results in mutability UB.

pub unsafe fn init() {
static mut HEAP_SPACE: InitHeapSpace = InitHeapSpace([0; HEAP_SIZE]);
HEAP_ALLOCATOR.init(HEAP_SPACE.0.as_ptr(), HEAP_SIZE);

}
read-only transition

(b) Mutability UB

Figure 9: UB cases detected by KERNMIRI.

proves the soundness of our implementation of OSTD. We
outline two representative UB cases in OSTD detected by
KERNMIRI, as illustrated in Figure 9.

The first case involves a data race UB (Figure 9(a)).
When creating a Frame using from_unused (see 4.4.2), if
the ref_count corresponding to the physical address has
just been decremented by a drop operation that has not yet
completed, these two operations may concurrently modify the
metadata, leading to data race UB.

The second case pertains to mutability UB (Figure 9(b)),
where the code overlooks Rust’s rules regarding the conver-
sion of references to pointers. Specifically, when a reference
is first converted into a pointer, the type of pointer determines
the mutability constraints of the memory region. In this case
a reference to the HEAP_SPACE is incorrectly converted into
an immutable pointer during initialization. This conversion
conflicts with subsequent mutable operations, resulting in UB.

7 Related Work

Safe language-based OSes. The development of operating
systems using safe programming languages has been steadily
increasing. Examples include Biscuit [19], implemented in
Go; JX [28], developed in Java; MirageOS [43], built with
OCaml; Verve [62], written in C#; and Singularity [33], which
utilizes Sing# (an extension of C#). Rust has also become a
popular choice for system development, as seen in projects
like Theseus [16], Tock [38], RustyHermit [37], Redox [21],
and rCore [52]. ASTERINAS is also implemented in Rust but
goes further by leveraging Rust’s type and memory safety
features to achieve a minimal and sound TCB.

Intra-kernel privileged separation. Various mechanisms
have been proposed to achieve privilege separation within the
kernel. PerspicuOS [20] enforces separation using page table
write protection and static analysis. RustyHermit-MPK [59],
CubicleOS [56], and KDPM [36] employ Intel MPK for iso-
lation. Lightweight Virtualized Domains [50] achieve separa-
tion through EPT and VMFUNC. RedLeaf [49], Tock [38],
and Theseus [16] utilize Rust’s safety features to create a new
privilege level within the kernel. ASTERINAS achieves both
soundness and minimality of intra-kernel privilege separation
through a redefinition of the essential TCB functions.
Scheduler Injection. ghOSt [32] modifies Linux to delegate
scheduling to userspace, incurring non-trivial overhead, while
Enoki [47] adapts ghOSt’s architecture but moves scheduler
back to the kernel. In contrast, ASTERINAS offers (i) a smaller
TCB—ghOSt relies on C-based run-queues, and Enoki can’t
catch all semantic bugs—and (ii) more flexible APIs, as Enoki
schedulers must coordinate with Linux to avoid inconsisten-
cies when managing run-queues, limiting independence.

8 Conclusions

This paper presents ASTERINAS, a Linux ABI-compatible
OS kernel based on our novel framekernel architecture. By
harnessing Rust’s ownership and type-safety guarantees, a
framekernel enforces intra-kernel privilege separation to
achieve a small TCB in terms of memory safety. Using
the APIs of OSTD (TCB), ASTERINAS (non-TCB) is im-
plemented entirely in safe Rust, supporting over 210 Linux
system calls. Our comprehensive evaluation shows that AS-
TERINAS delivers performance on par with Linux, demon-
strating that a fully-featured, general-purpose OS can be both
memory-safe and highly efficient.

9 Acknowledgments

The SUSTech authors are affiliated with the Research In-
stitute of Trustworthy Autonomous Systems and in part
supported by National Key R&D Program of China (No.
2023YFB4503902), CCF-AFSG RF20220012 and CCF-
AFSG RF20230211. The Peking University authors are in
part supported by National Science Foundation of China (No.
62032001). Asterinas has benefited from the collective exper-
tise and support of numerous colleagues including Tao Xie,
Bo An, Lingxin Kong, Yao Guo, Leye Wang, Huashan Yu,
Jie Zhang, Wenfei Wu, Hui Xu, Zhaozhong Ni, Wei Zhang,
Zhengyu He, Tao Wei, Lin Huang, Chuan Song, Yu Chen,
Weijie Liu, Zhi Li, and many more. Special recognition is
due to our open source contributors - Qing Li, Fabing Li,
Shaowei Song, Qingsong Chen, Siyuan Hui, Zejun Zhao, Qi-
hang Xu, Anmin Liu, Wang Siyuan, Wenqian Yan, Zhenchen
Wang, Yingdi Shan, Hu Kang, Zhe Tang, Ruize Tang, and
many more - whose technical dedication and collaborative
spirit transformed this ambitious vision into a reality.

USENIX Association 2025 USENIX Annual Technical Conference 319

References

[1] The Asterinas Github repository. https://github.
com/asterinas/asterinas.

[2] The ATC’25 artifact evaluation reposi-
tory. https://github.com/asterinas/
atc25-artifact-evaluation/.

[3] Rust for linux on wikipedia. https://en.wikipedia.
org/wiki/Rust_for_Linux, 2024.

[4] cppreference . C++ named requirements: POD-
Type (deprecated in C++20) - cppreference.com.
https://en.cppreference.com/w/cpp/named_
req/PODType.

[5] Linux . CFS Scheduler — The Linux Kernel documenta-
tion. https://www.kernel.org/doc/html/latest/
scheduler/sched-design-CFS.html.

[6] The Rust Project Developers . Behavior con-
sidered undefined - The Rust Reference. https:
//doc.rust-lang.org/nightly/reference/
behavior-considered-undefined.html.

[7] The Rust Project Developers . The borrow
checker - Rust Compiler Development Guide.
https://rustc-dev-guide.rust-lang.org/
borrow_check.html.

[8] The Rust Project Developers . How Safe and Unsafe In-
teract - The Rustonomicon. https://doc.rust-lang.
org/nomicon/safe-unsafe-meaning.html.

[9] The Rust Project Developers . Type check-
ing - Rust Compiler Development Guide.
https://rustc-dev-guide.rust-lang.org/
type-checking.html.

[10] The Rust Project Developers . What is
Ownership? - The Rust Programming Lan-
guage. https://doc.rust-lang.org/book/
ch04-01-what-is-ownership.html.

[11] America’s Cyber Defense Agency. Widespread
IT Outage Due to CrowdStrike Update. https://
www.cisa.gov/news-events/alerts/2024/07/19/
widespread-it-outage-due-crowdstrike-update,
2024.

[12] Vytautas Astrauskas, Christoph Matheja, Federico Poli,
Peter Müller, and Alexander J. Summers. How do pro-
grammers use unsafe rust? Proc. ACM Program. Lang.,
4(OOPSLA):136:1–136:27, 2020.

[13] Jens Axboe. Flexible I/O Tester. https://github.
com/axboe/fio, 2022.

[14] Jeff Bonwick. The Slab Allocator: An Object-Caching
Kernel Memory Allocator. In USENIX Summer.

[15] Jeff Bonwick and Jonathan Adams. Magazines and
Vmem: Extending the Slab Allocator to Many CPUs
and Arbitrary Resources. In USENIX ATC, General
Track.

[16] Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin
Zhong. Theseus: an experiment in operating system
structure and state management. In 14th USENIX Sym-
posium on Operating Systems Design and Implemen-
tation (OSDI 20), pages 1–19. USENIX Association,
November 2020.

[17] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth
Hallem, and Dawson Engler. An empirical study of
operating systems errors. SIGOPS Oper. Syst. Rev.,
35(5):73–88, October 2001.

[18] Jonathan Corbet. A first look at Rust in the 6.1 kernel.
https://lwn.net/Articles/910762/, 2022.

[19] Cody Cutler, M. Frans Kaashoek, and Robert T. Morris.
The benefits and costs of writing a POSIX kernel in a
high-level language. In 13th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 18),
pages 89–105, Carlsbad, CA, October 2018. USENIX
Association.

[20] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz,
John Criswell, and Vikram Adve. Nested kernel: An op-
erating system architecture for intra-kernel privilege sep-
aration. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15, page
191–206, New York, NY, USA, 2015. Association for
Computing Machinery.

[21] Redox Developers. Redox - your next(gen) os. https:
//www.redox-os.org/, 2024.

[22] Smoltcp Developers. Smoltcp: TCP/IP Stack for Embed-
ded Rust. https://github.com/smoltcp-rs, 2025.

[23] The Asterinas developers. Example: Writing a Kernel
in 100 Lines of Safe Rust - The Asterinas Book. https:
//github.com/asterinas/asterinas/blob/
dec7ac1346649a0ef1a1256da258cd2f9f11ac4b/
docs/src/ostd/a-100-line-kernel.md.

[24] The Asterinas developers. The reader-
writer interface of untyped memory. https:
//github.com/asterinas/asterinas/blob/
main/ostd/src/mm/frame/untyped.rs#L73.

[25] The Rust Project Developers. The Rustonomicon.
https://github.com/rust-lang/nomicon, 2024.

320 2025 USENIX Annual Technical Conference USENIX Association

https://github.com/asterinas/asterinas
https://github.com/asterinas/asterinas
https://github.com/asterinas/atc25-artifact-evaluation/
https://github.com/asterinas/atc25-artifact-evaluation/
https://en.wikipedia.org/wiki/Rust_for_Linux
https://en.wikipedia.org/wiki/Rust_for_Linux
https://en.cppreference.com/w/cpp/named_req/PODType
https://en.cppreference.com/w/cpp/named_req/PODType
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html
https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html
https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html
https://rustc-dev-guide.rust-lang.org/borrow_check.html
https://rustc-dev-guide.rust-lang.org/borrow_check.html
https://doc.rust-lang.org/nomicon/safe-unsafe-meaning.html
https://doc.rust-lang.org/nomicon/safe-unsafe-meaning.html
https://rustc-dev-guide.rust-lang.org/type-checking.html
https://rustc-dev-guide.rust-lang.org/type-checking.html
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://doc.rust-lang.org/book/ch04-01-what-is-ownership.html
https://www.cisa.gov/news-events/alerts/2024/07/19/widespread-it-outage-due-crowdstrike-update
https://www.cisa.gov/news-events/alerts/2024/07/19/widespread-it-outage-due-crowdstrike-update
https://www.cisa.gov/news-events/alerts/2024/07/19/widespread-it-outage-due-crowdstrike-update
https://github.com/axboe/fio
https://github.com/axboe/fio
https://lwn.net/Articles/910762/
https://www.redox-os.org/
https://www.redox-os.org/
https://github.com/smoltcp-rs
https://github.com/asterinas/asterinas/blob/dec7ac1346649a0ef1a1256da258cd2f9f11ac4b/docs/src/ostd/a-100-line-kernel.md
https://github.com/asterinas/asterinas/blob/dec7ac1346649a0ef1a1256da258cd2f9f11ac4b/docs/src/ostd/a-100-line-kernel.md
https://github.com/asterinas/asterinas/blob/dec7ac1346649a0ef1a1256da258cd2f9f11ac4b/docs/src/ostd/a-100-line-kernel.md
https://github.com/asterinas/asterinas/blob/dec7ac1346649a0ef1a1256da258cd2f9f11ac4b/docs/src/ostd/a-100-line-kernel.md
https://github.com/asterinas/asterinas/blob/main/ostd/src/mm/frame/untyped.rs#L73
https://github.com/asterinas/asterinas/blob/main/ostd/src/mm/frame/untyped.rs#L73
https://github.com/asterinas/asterinas/blob/main/ostd/src/mm/frame/untyped.rs#L73
https://github.com/rust-lang/nomicon

[26] The Apache Software Foundation. ab - apache http
server benchmarking tool. https://httpd.apache.
org/docs/2.4/programs/ab.html, 2024.

[27] Michael Godfrey and Qiang Tu. Growth, evolution, and
structural change in open source software. In Proceed-
ings of the 4th International Workshop on Principles
of Software Evolution, IWPSE ’01, page 103–106, New
York, NY, USA, 2001. Association for Computing Ma-
chinery.

[28] Michael Golm, Meik Felser, Christian Wawersich, and
Jürgen Kleinoeder. The JX operating system. In 2002
USENIX Annual Technical Conference (USENIX ATC
02), Monterey, CA, June 2002. USENIX Association.

[29] Google. Android rust introduction. https:
//source.android.com/docs/setup/build/
rust/building-rust-modules/overview.

[30] Internet Security Research Group. What is mem-
ory safety and why does it matter? https://www.
memorysafety.org/docs/memory-safety/, 2025.

[31] Gary Guo. Klint: Compile-time detection
of atomic context violations for kernel rust
code. https://www.memorysafety.org/blog/
gary-guo-klint-rust-tools/, 2023.

[32] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule,
Ofir Weisse, Barret Rhoden, Josh Don, Luigi Rizzo, Oleg
Rombakh, Paul Turner, and Christos Kozyrakis. ghost:
Fast & flexible user-space delegation of linux schedul-
ing. In Proceedings of the ACM SIGOPS 28th Sympo-
sium on Operating Systems Principles, SOSP ’21, page
588–604, New York, NY, USA, 2021. Association for
Computing Machinery.

[33] Galen Hunt and Jim Larus. Singularity: Rethinking
the software stack. ACM SIGOPS Operating Systems
Review, 41(2):37–49, April 2007.

[34] Clemente Izurieta and James Bieman. The evolution
of freebsd and linux. In Proceedings of the 2006
ACM/IEEE International Symposium on Empirical Soft-
ware Engineering, ISESE ’06, page 204–211, New York,
NY, USA, 2006. Association for Computing Machinery.

[35] Theodore Johnson and Krishna Harathi. A simple cor-
rectness proof of the MCS contention-free lock. Infor-
mation Processing Letters, 48(5):215–220.

[36] Hiroki Kuzuno and Toshihiro Yamauchi. Kdpm: Kernel
data protection mechanism using a memory protection
key. In Advances in Information and Computer Security:
17th International Workshop on Security, IWSEC 2022,
Tokyo, Japan, August 31 – September 2, 2022, Proceed-
ings, page 66–84, Berlin, Heidelberg, 2022. Springer-
Verlag.

[37] Stefan Lankes, Jens Breitbart, and Simon Pickartz. Ex-
ploring rust for unikernel development. In Proceedings
of the 10th Workshop on Programming Languages and
Operating Systems, PLOS ’19, page 8–15, New York,
NY, USA, 2019. Association for Computing Machinery.

[38] Amit Levy, Bradford Campbell, Branden Ghena,
Daniel B. Giffin, Pat Pannuto, Prabal Dutta, and Philip
Levis. Multiprogramming a 64kb computer safely and
efficiently. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, page 234–251,
New York, NY, USA, 2017. Association for Computing
Machinery.

[39] Hongyu Li, Liwei Guo, Yexuan Yang, Shangguang
Wang, and Mengwei Xu. An Empirical Study of {Rust-
for-Linux}: The Success, Dissatisfaction, and Compro-
mise. pages 425–443.

[40] Hongyu Li, Liwei Guo, Yexuan Yang, Shangguang
Wang, and Mengwei Xu. An empirical study of rust-
for-linux: The success, dissatisfaction, and compromise.
In Saurabh Bagchi and Yiying Zhang, editors, Proceed-
ings of the 2024 USENIX Annual Technical Conference,
USENIX ATC 2024, Santa Clara, CA, USA, July 10-12,
2024, pages 425–443. USENIX Association, 2024.

[41] Linux. Rust — The Linux Kernel documen-
tation. https://docs.kernel.org/rust/index.
html, 2024.

[42] LLVM Project. Llvm tools. https://llvm.org/
docs/CommandGuide/, 2025. Accessed: 2025-01-14.

[43] Anil Madhavapeddy and David J. Scott. Unikernels:
Rise of the virtual library operating system: What if all
the software layers in a virtual appliance were compiled
within the same safe, high-level language framework?
Queue, 11(11):30–44, December 2013.

[44] A. Theodore Markettos, Colin Rothwell, Brett F. Gut-
stein, Allison Pearce, Peter G. Neumann, Simon W.
Moore, and Robert N. M. Watson. Thunderclap: Ex-
ploring Vulnerabilities in Operating System IOMMU
Protection via DMA from Untrustworthy Peripherals.
In Proceedings 2019 Network and Distributed System
Security Symposium, NDSS ’19. Internet Society.

[45] Paul E. McKenney, Joel Fernandes, Silas Boyd-
Wickizer, and Jonathan Walpole. RCU usage in the
Linux kernel: Eighteen years later. SIGOPS Oper. Syst.
Rev., 54(1):47–63, August 2020.

[46] Larry W McVoy, Carl Staelin, et al. Lmbench: Portable
tools for performance analysis. In USENIX annual tech-
nical conference, pages 279–294. San Diego, CA, USA,
1996.

USENIX Association 2025 USENIX Annual Technical Conference 321

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://source.android.com/docs/setup/build/rust/building-rust-modules/overview
https://source.android.com/docs/setup/build/rust/building-rust-modules/overview
https://source.android.com/docs/setup/build/rust/building-rust-modules/overview
https://www.memorysafety.org/docs/memory-safety/
https://www.memorysafety.org/docs/memory-safety/
https://www.memorysafety.org/blog/gary-guo-klint-rust-tools/
https://www.memorysafety.org/blog/gary-guo-klint-rust-tools/
https://docs.kernel.org/rust/index.html
https://docs.kernel.org/rust/index.html
https://llvm.org/docs/CommandGuide/
https://llvm.org/docs/CommandGuide/

[47] Samantha Miller, Anirudh Kumar, Tanay Vakharia, Ang
Chen, Danyang Zhuo, and Thomas Anderson. Enoki:
High velocity linux kernel scheduler development. In
Proceedings of the Nineteenth European Conference on
Computer Systems, EuroSys ’24, page 962–980, New
York, NY, USA, 2024. Association for Computing Ma-
chinery.

[48] Miri. Miri - an interpreter for rust’s mid-level in-
termediate representation. https://github.com/
rust-lang/miri, 2024.

[49] Vikram Narayanan, Tianjiao Huang, David Detweiler,
Dan Appel, Zhaofeng Li, Gerd Zellweger, and Anton
Burtsev. RedLeaf: Isolation and communication in a
safe operating system. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 21–39. USENIX Association, November
2020.

[50] Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent
Jaeger, and Anton Burtsev. Lightweight kernel isolation
with virtualization and vm functions. In Proceedings of
the 16th ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, VEE ’20, page
157–171, New York, NY, USA, 2020. Association for
Computing Machinery.

[51] SQLite organization. Measuring and reducing cpu usage
in sqlite. https://sqlite.org/cpu.html, 2024.

[52] rcore os. rcore. https://github.com/rcore-os/
rCore, 2023.

[53] Redis. Redis benchmark. https://redis.io/docs/
latest/operate/oss_and_stack/management/
optimization/benchmarks/, 2024.

[54] The Register. Microsoft is busy rewrit-
ing core windows code in memory-safe rust.
https://www.theregister.com/2023/04/27/
microsoft_windows_rust/.

[55] Rust for Linux. Mutex::lock_noguard() may be unsafe
· Issue #862 · Rust-for-Linux/linux. https://github.
com/Rust-for-Linux/linux/issues/862.

[56] Vasily A. Sartakov, Lluís Vilanova, and Peter Pietzuch.
Cubicleos: a library os with software componentisation
for practical isolation. In Proceedings of the 26th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, AS-
PLOS ’21, page 546–558, New York, NY, USA, 2021.
Association for Computing Machinery.

[57] Walt Scacchi. Understanding open source software
evolution. Software Evolution and Feedback: Theory
and Practice, 9:181–205, 2006.

[58] Strace. Strace linux syscall tracer. https://strace.
io/, 2024.

[59] Mincheol Sung, Pierre Olivier, Stefan Lankes, and Bi-
noy Ravindran. Intra-unikernel isolation with intel mem-
ory protection keys. In Proceedings of the 16th ACM
SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, VEE ’20, page 143–156, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

[60] Rust Secure Code WG. RustSec Advisory Database.
https://github.com/RustSec/advisory-db,
2024.

[61] Paul Willmann, Scott Rixner, and Alan L. Cox. Pro-
tection strategies for direct access to virtualized I/O
devices. In 2008 USENIX Annual Technical Conference
(USENIX ATC 08), Boston, MA, June 2008. USENIX
Association.

[62] Jean Yang and Chris Hawblitzel. Safe to the last instruc-
tion: Automated verification of a type-safe operating
system. In PLDI. Association for Computing Machin-
ery, Inc., June 2010.

[63] Zongwei Zhou, Virgil D. Gligor, James Newsome, and
Jonathan M. McCune. Building verifiable trusted path
on commodity x86 computers. In 2012 IEEE Sympo-
sium on Security and Privacy, pages 616–630, 2012.

A Another Example for OSTD APIs

Task Context
Request data from device

Create a data buffer

Create a DMA mapping for the buffer

Frame

DmaStream

IoMem

Task

OSTD (TCB)
Manages

the context

Uses

Notify the device

OSTD client (Non-TCB)

Uses

Uses

Uses

Interrupt Context
Complete the request

Copy data to the kernel

IrqLine

Manages
the context

Figure 10: An example of OSTD API usage: request data from
a device.

B Complete results for Redis benchmark

Table 11 displays the complete results from testing Redis
using the redis-benchmark. The left column lists all the oper-
ations conducted in the benchmark, while the three columns

322 2025 USENIX Annual Technical Conference USENIX Association

https://github.com/rust-lang/miri
https://github.com/rust-lang/miri
https://sqlite.org/cpu.html
https://github.com/rcore-os/rCore
https://github.com/rcore-os/rCore
https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/benchmarks/
https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/benchmarks/
https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/benchmarks/
https://www.theregister.com/2023/04/27/microsoft_windows_rust/
https://www.theregister.com/2023/04/27/microsoft_windows_rust/
https://github.com/Rust-for-Linux/linux/issues/862
https://github.com/Rust-for-Linux/linux/issues/862
https://strace.io/
https://strace.io/
https://github.com/RustSec/advisory-db

on the right present performance metrics for Linux, ASTER-
INAS, and ASTERINAS without IOMMU, respectively. The
performance metrics are measured in requests per second
(rps).

Operation Linux(rps) Asterinas(rps) Asterinas
no IOMMU(rps)

PING_INLINE 151022.44 213341.84 211694.22
PING_MBULK 157978.9 220975.64 218040.66
SET 153390.59 211647.77 210302.41
GET 155994.34 218670.04 219300.26
INCR 152132.93 219217.17 219302.27
LPUSH 149886.75 211691.68 211960.12
RPUSH 150504.81 214605.21 214053.79
LPOP 148347.63 209365.11 209308.7
RPOP 150713.57 210426.48 210138.93
SADD 156514.14 217682.08 217877.7
HSET 152276.36 209336.32 211663.65
SPOP 157350.85 217016.38 221988.13
ZADD 149385.73 206069.24 207479.97
ZPOPMIN 158360.84 219783.59 221895.17
LRANGE_100 92696.06 114471.67 113062.24
LRANGE_300 39268.41 39732.19 39629.18
LRANGE_500 27429.67 27843.41 27338.37
LRANGE_600 23876.49 23649.05 23674.88
MSET (10 keys) 125746.68 160040.56 157920.17

Table 11: Complete results of redis-benchmark.

C Complete results for SQLite benchmark

Table 12 displays the complete results from testing SQLite
with speedtest1. The first two columns indicate the test num-
bers along with their corresponding test names. The last three
columns show the performance metrics for Linux, ASTERI-
NAS, and ASTERINAS without IOMMU, measured in seconds.

Num. Test Name Linux
(s)

Aster.
(s)

Aster. no
IOMMU(s)

100 500000 INSERTs into table with
no index

0.27 0.33 0.32

110 500000 ordered INSERTS with one
index/PK

0.43 0.49 0.49

120 500000 unordered INSERTS with
one index/PK

0.88 1.00 1.00

130 25 SELECTS, numeric BE-
TWEEN, unindexed

0.40 0.45 0.44

140 10 SELECTS, LIKE, unindexed 0.61 0.71 0.73
142 10 SELECTS w/ORDER BY, unin-

dexed
1.17 1.35 1.34

145 10 SELECTS w/ORDER BY and
LIMIT, unindexed

0.49 0.57 0.56

150 CREATE INDEX five times 0.95 1.16 1.13
160 100000 SELECTS, numeric BE-

TWEEN, indexed
1.74 2.02 2.03

161 100000 SELECTS, numeric BE-
TWEEN, PK

1.75 2.02 2.02

170 100000 SELECTS, text BE-
TWEEN, indexed

1.72 2.06 2.03

180 500000 INSERTS with three in-
dexes

2.14 2.41 2.42

190 DELETE and REFILL one table 2.09 2.38 2.38
200 VACUUM 1.59 2.21 2.07
210 ALTER TABLE ADD COLUMN,

and query
0.04 0.04 0.04

230 100000 UPDATES, numeric BE-
TWEEN, indexed

1.81 2.11 2.08

240 500000 UPDATES of individual
rows

1.34 1.58 1.55

250 One big UPDATE of the whole
500000-row table

0.21 0.26 0.24

260 Query added column after filling 0.02 0.02 0.02
270 100000 DELETEs, numeric BE-

TWEEN, indexed
2.26 2.63 2.58

280 500000 DELETEs of individual
rows

2.19 2.6 2.58

290 Refill two 500000-row tables using
REPLACE

3.85 4.31 4.22

300 Refill a 500000-row table using
(b&1)==(a&1)

2.20 2.51 2.48

310 100000 four-ways joins 3.60 4.27 4.25
320 subquery in result set 7.14 8.3 8.35
400 700000 REPLACE ops on an IPK 1.44 1.57 1.58
410 700000 SELECTS on an IPK 2.25 3.06 3.05
500 700000 REPLACE on TEXT PK 1.66 1.82 1.85
510 700000 SELECTS on a TEXT PK 2.56 3.4 3.41
520 700000 SELECT DISTINCT 0.57 0.62 0.64
980 PRAGMA integrity_check 3.33 3.95 3.97
990 ANALYZE 0.20 0.22 0.22

TOTAL 52.88 62.44 62.07

Table 12: Complete results of SQLite.

USENIX Association 2025 USENIX Annual Technical Conference 323

	Introduction
	Background and Motivation
	The Rusty Way to Safety
	Rustification of Mainstream OSes
	Clean-Slate Rust OSes

	Framekernel Architecture
	Ostd
	Expressive APIs
	Frame Management
	Privilege Separation
	Safe Policy Injection
	Task Scheduler
	Frame Allocator
	Slab Allocator

	Asterinas
	Evaluation
	Performance Evaluation
	Micro-benchmarks
	Macro-benchmarks
	Overhead due to Safety Checks
	IOMMU Optimization

	TCB Evaluation
	TCB Comparison
	TCB Evolution

	Safety Evaluation
	Coverage of KernMiri
	Case Studies

	Related Work
	Conclusions
	Acknowledgments
	Another Example for Ostd APIs
	Complete results for Redis benchmark
	Complete results for SQLite benchmark

