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Abstract evaluation shows that AEoL1A outperforms Linux by 2x and

Polling-based userspace storage stacks achieve great 1/0
performance. However, they cannot efficiently and securely
share disks and CPUs among multiple tasks. In contrast,
interrupt-based kernel stacks inherently suffer from subpar
I/O performance but achieve advantages in resource sharing.

We present AEOLIA, a novel storage stack that achieves
great I/O performance while offering efficient and secure re-
source sharing. AEOLIA is an interrupt-based userspace stor-
age stack, representing a new point in the design space pre-
viously considered unfeasible. Our main observation is that,
contrary to conventional wisdom, polling offers only mar-
ginal disk performance improvements over interrupts. AE-
oL1A exploits user interrupt, an emerging hardware feature
commonly used for userspace IPIs, in a novel way to deliver
storage interrupts directly to userspace, thereby achieving
high I/O performance with direct access. AEOLIA leverages
the hardware intra-process isolation features and sched_ext,
an eBPF-based userspace scheduling framework, to efficiently
and securely share CPUs and disks among multiple tasks,
challenging the common belief that these are inherent dis-
advantages of userspace storage stacks. The above design
enables AEOLIA to realize AEOFS, a high-performance library
file system that securely and directly accesses disks. Our
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1 Introduction

Advancements in storage medium (e.g., Samsung’s Z-
NAND [58], Kioxia’s XL-Flash [43], and Intel’s 3D
XPoint [35]) enable modern NVMe SSDs [36, 42, 59] to
achieve ultra-low latency (in the scale of a few ys) and mil-
lions of IOPS. Such orders-of-magnitude improvements over
conventional devices pose a significant challenge for storage
stacks to utilize disk performance efficiently.

Existing high-performance storage stacks fall into two
classes: userspace polling-based ones [40, 48, 67] and kernel
interrupt-based ones [34, 45, 55, 69, 71]. Both classes couple
two orthogonal axes in the design space: @ userspace vs.
kernel and @ polling vs. interrupt. Due to such coupling, the
rest of the design space remains unexplored. Furthermore,
as summarized in Table 1 and detailed next, neither design
achieves all the desired properties of a storage stack.

Polling-based userspace storage stacks [40, 48, 67] offer
great I/O performance, since the storage stack directly ac-
cesses disks, thereby bypassing the kernel and various asso-
ciated overheads (e.g., kernel trapping, layering). However,
this design prevents multiple tasks from sharing storage and
computation resources. Specifically, since there is no trusted
entity mediating access, multiple untrusted tasks cannot
share a disk. Furthermore, recent studies [34, 71] also reveal
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Figure 1. Comparison of storage stack architectures. AEOLIA is an
interrupt-based userspace storage stack, representing a new point
in the design space. AEOLIA is enabled by 1) our insights in one
axis of the design space, i.e., polling vs. interrupts; and 2) our novel
design in another axis, i.e., kernel vs. userspace, by overcoming
previously considered inherent disadvantages for userspace stack.

that when multiple tasks share a CPU, a userspace storage
stack incurs high I/0 tail latency, since it cannot coordinate
with the kernel thread scheduler.

Conventional interrupt-based kernel storage stacks [34,
45, 55, 69, 71] overcome the aforementioned drawbacks
of userspace stacks to efficiently and securely share re-
sources among multiple tasks. However, a kernel stack suf-
fers from inherent challenges in achieving high I/O perfor-
mance [25, 39, 51, 74]. Thus, despite a long list of enhance-
ments, it still cannot match the performance of a userspace
one. Finally, both storage stacks fall short in supporting high-
performance file systems with good multicore scalability.

This paper presents AEOLIA, a userspace interrupt-based
storage stack that achieves all key properties listed in Table 1.
To design AEOLIA, we first examine one axis of the design
space by evaluating polling and interrupts, the two funda-
mental approaches to I/O completion. Our first key finding
is that, contrary to the conventional wisdom [27, 57, 66, 67],
polling only offers marginal I/O performance improvements
over interrupts. Most overhead previously attributed to inter-
rupts actually stems not from the interrupt itself but rather
kernel thread scheduling policies that no longer suit fast stor-
age devices. By proposing an active checking policy, we find
that interrupt achieves similar I/O performance as polling.

Our second key finding is that while polling may improve
I/O performance, its excessive CPU usage imposes inher-
ent limitations on building high-performance file systems.
We reach this finding by examining uFS [48], a file system
building upon SPDK [62, 67]. To ensure protected sharing
and minimize CPU usage, uFS runs in a separate process
with dedicated threads that handle file system requests; ap-
plications communicate with uFS via IPC. Despite efforts to
reduce IPC cost [50], we find that IPC still incurs excessive
software overhead (e.g., 400ns). Furthermore, as our eval-
uation in §9.4 shows, polling poses inherent challenges to
file system multicore scalability, since its high CPU usage
reduces the effective contribution of each core.

The key takeaway from our analysis is that interrupts
offer several advantages over polling while incurring only a
small performance disadvantage.
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User Poll Kernel INTR ABOLIA
[40, 48, 67] [34, 45, 55, 69, 71]
High I/0 Performance v X v
Coordinated Scheduling X v v
Protected Sharing X v v
High-Performance File System X X v

Table 1. Desired properties of storage stack.

Based on our analysis, we conclude that userspace
interrupt-based storage stacks represent a new and useful
point in the design space. It benefits from interrupts without
suffering from kernel performance overheads. However, no
such storage stack currently exists, and building one is con-
sidered difficult [21], let alone overcoming the many other
challenges of a complete storage stack. We design and imple-
ment AeoLia! to bridge the aforementioned gap (Figure 1).

We design AEOLIA to achieve all the four essential prop-
erties for storage stacks: 1) High I/0 Performance. Each
task directly accesses disks for low latency and high through-
put. 2) Coordinated Scheduling. AEoLIA works in concert
with thread scheduling, enabling multiple tasks to share a
core efficiently. 3) Protected Sharing. Multiple untrusted
tasks share the disk without violating access permissions or
corrupting the storage stack. 4) High-Performance File
System. AeoLIA includes a high-performance file system
with low access latency and excellent multicore scalability.

Our design of AEoLIA overcomes what were previously
considered inherent challenges of userspace stacks.

First, to meet high I/O performance, AEOLIA exploits user
interrupts, a new hardware feature supported since Sapphire
Rapids CPUs [13], to bypass the kernel to directly deliver
storage interrupts to userspace. Existing work [29, 46] lever-
ages user interrupts for task scheduling, via, e.g., userspace
IPIs. AEoL1A advances by leveraging user interrupts for stor-
age devices. To achieve this, through a detailed analysis of
the hardware behavior, we identify a safe and novel approach
to deliver device interrupts to userspace.

Second, the inability to enforce protected sharing is often
considered an inherent disadvantage for userspace storage
stacks [34, 68, 71]. Prior approaches [23, 65] address this prob-
lem by introducing new hardware support. Instead, AEOLIA
exploits standard hardware supports for intra-address space
isolation. With such support, AEoLIA incorporates trusted
entities in the process address space. The trusted entities are
protected against untrusted userspace code to enforce access
permissions and prevent file system metadata corruption,
thereby achieving secure sharing.

Third, coordinating with thread scheduling is also challeng-
ing due to semantic gaps between the kernel and userspace.
However, this is necessary for AEOLIA to @ avoid kernel
scheduling overhead imposed on interrupts and @ support
multiple threads efficiently sharing a CPU. AEoL1A over-
comes this limitation by using sched_ext [7, 12], a recent

1A floating island surrounded by a wall of unbreakable bronze in Odyssey.
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Figure 2. Average access latency Figure 3. Overhead breakdown
of a 4KB read request. of a 4KB read access.

Linux framework that allows userspace tasks to specify
an arbitrary thread scheduling policy with eBPF [3]. With
sched_ext, AEOLIA bridges the semantic gaps by coordinat-
ing with the kernel thread scheduler over the eBPF map.

Finally, building upon the high I/O performance and pro-
tected sharing in AEOLIA, we designed AEOFS, a fast POSIX-
like library file system. AEOLIA enables direct data and meta-
data access with fine-grained parallelism to achieve low la-
tency, high throughput, and great multicore scalability. In
addition, to achieve metadata integrity, AEOFS leverages the
state separation design from Trio [73], a recent advancement
in library file systems. However, building upon AEoLIA, AE-
OFS advances Trio by introducing trusted entities into the li-
brary file system to perform eager metadata integrity checks.
Compared to the lazy integrity checks adopted in Trio, eager
checking is easy to reason about correctness while avoiding
data loss if the check fails. Furthermore, eager checking
incurs a negligible performance cost; each operation pays
an extra 85 cycles to switch to the trusted entity.

We implement AeoLia from scratch with 17751 lines of
code. Our evaluation shows that AEoL1A performs similarly
to SPDK and AEOFS outperforms ext4, f2fs, and uFS by 2.87x
to 8.19x on LevelDB.

In summary, this paper makes the following contributions:

e Analysis. We reveal two new findings: 1) polling does
not significantly outperform interrupt, but rather 2)
limits file system performance.

e AEoLIA. We design AEOLIA, a userspace interrupt-
based storage stack, representing a new point in the
design space.

e AEOFS. We design AEOFS, a high-performance library
file system with great multicore scalability.

2 Analyzing Current Storage Stacks

This section analyzes the tradeoffs between interrupt and
polling, two fundamental approaches for I/O completion,
and a key dimension in the storage stack design space. We
examine two representative stacks: the Linux kernel and
SPDK [62]. We evaluated with a 128-core Intel machine
equipped with an Optane P5800X SSD [36] (detailed in §9).

To reach our insights, we partition the storage stack into
two layers: @ the storage subsystem (e.g., BIO and the de-
vice driver in Linux) (§2.1) and @ the file system (§2.2) and
examine each layer separately.
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2.1 Storage Subsystem: Interrupt versus Polling

For the storage subsystem, we evaluate two cases: 1) a single
task running alone; and 2) multiple tasks running together.
I/0 performance with a single task. With a single task,
the I/0O performance of SPDK is known to surpass the kernel
stack significantly. Conventional wisdom [24, 27, 34, 57, 68,
71] attributes the gain to two factors: 1) using polling rather
than interrupts and 2) direct userspace access, bypassing
various kernel overhead such as layering and context switch.

We next analyze how much each of these two factors
contributes to the performance gains of SPDK. Our workload
is fio with 4KB read. We compare SPDK with io_uring [9],
the newest kernel stack interface. We configure io_uring
with two setups: 1) default (iou_df1), which uses interrupts,
and 2) iou_poll, which uses polling.

Figure 2 shows the latency with different setups in the
kernel stack vs. SPDK. At first glance, polling brings signifi-
cant benefits (iou_poll: 5.4us vs. iou_dfl: 8.2us). However,
as shown in Figure 3, upon further analysis, we find that
most of the 2.8us interrupt overhead primarily stems from a
poor thread scheduling policy, which costs 1.8us. The inter-
rupt mechanism itself incurs only 0.6us overhead, while the
remaining 0.4us is due to different code execution paths. the
interrupt mechanism itself incurs only 0.6us overhead.

More specifically, the 1.8us scheduling overhead comes
from a pathological case in thread scheduling (Figure 4).
After issuing requests, the kernel eagerly puts the current
task (task A) into sleep and invokes the scheduler, hoping
to run the next task. However, since no other runnable task
exists, the kernel has to context switch to the idle task [8].
Therefore, upon I/O completion, the kernel must go through
a lengthy process of @ converting the sleeping task A to
runnable (0.7us); @ updating scheduling statistics before
leaving the idle task (0.4ps); and finally, @ scheduling and
context switching back to task A (0.7us). When an 1/O op-
eration costs milliseconds, eagerly putting task A to sleep
before even identifying the next task to run does not cause
an issue, but this is no longer suitable for modern SSDs.

To avoid the high scheduling overhead, we introduce an
active checking policy. Rather than blindly putting a task
that issues a storage request into a sleep, our policy keeps
the task awake when no runnable task exists. With this
policy, the optimized interrupt (iou_opt) performs similarly
to polling (6.3us vs 5.4us)?, even with 4KB access size.

With the active checking policy, most performance
gains of SPDK actually come from kernel bypassing (SPDK:
4.2ps vs. iou_poll: 5.4us). The performance difference be-
tween our userspace interrupt-based AEODRIVER (4.8:s) and
SPDK (4.2ps) further validates the above claim.
Performance with multiple tasks. Figure 5 shows the
results of running on a single core: a) one I/O-intensive and

Interrupt accounts for 0.6us overhead and the remaining 0.3us is due to
kernel scheduling bottom-half operations.
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Figure 5. Performance when multiple tasks share a core. The I/O
intensive tasks repeatedly issue 128KB reads, and the compute-

intensive task is swaptions in PARSEC
one compute-intensive task and b) two I/O-intensive tasks.

In the former case, polling significantly reduces the work
performed by both types of tasks (see SPDK and iou_poll).
In the latter case, polling incurs a high tail latency. These
results conform to existing findings [34, 68, 71].

Polling suffers because of an inherent disadvantage: the
system does not know when the I/O finishes and thus cannot
coordinate thread scheduling with the storage stack. For
example, the high tail latency is because the scheduler cannot
promptly run the corresponding task when its I/O completes.
Finding #1: Polling offers marginal storage perfor-
mance gains over interrupts but is inherently chal-
lenging for coordinating with thread scheduling.

2.2 How Polling Limits File System Performance

Our analysis at the file system layer is motivated by the two
general performance limitations of existing file systems: 1)
high software overhead and 2) poor multicore scalability. The
cause of such performance limitations for kernel file systems
is known. The kernel stack aims to be general and, thus,
incurs various layering overhead (e.g., syscall [74], JBD [39])
to its file systems. It also incurs poor scalability due to the
challenge of designing a scalable yet general VFS [25, 51].
Our key finding is that file systems on polling-based stor-
age subsystems also inherently suffer from these limitations.
Take uFS [48] built upon SPDK as an example (Figure 1). uFS
is a standalone process with a small number of dedicated
worker threads to handle file system operations. Dedicated
worker threads are necessary to minimize CPU overhead
caused by polling®. However, this design requires applica-
tions to communicate with uFS using costly IPC (at least
hundreds of nanoseconds), incurring high overhead.
Furthermore, polling poses great challenges in multicore
scalability for a file system. To make the CPU overhead ac-
ceptable, polling often comes with an event-driven program-
ming model, which greatly complicates concurrency control
when multiple asynchronous event handlers need to coordi-
nate access to shared filesystem states. To simplify this, uFS

3While designs such as BlobFS [18] forgo dedicated worker threads by hav-
ing each application thread poll, we believe that such a design is challenging
to adopt in many scenarios due to excessive CPU usage.
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Polling Interrupt Kernel Userspace

/O Performance N X =V 1/O Performance X v
Coordinated Sched.  x v Coordinated Sched. v/ X =V
FS Performance X v Protected Sharing v/ X =V

Table 2. Tradeoffs in the two design dimensions of storage stacks.
— represents the conventional wisdom that AEoLIA challanges.

File User Execution

Stack Driver . Notification
System Interaction  Context
Linux  Kernel FS  Kernel driver Syscalls Kernel Interrupt
uFS uFS SPDK IPC Userspace Polling
AEOLIA AEOFS AEODRIVER  Library calls  Userspace Interrupt

Table 3. Comparison of representative storage stacks.

assigns all operations on a specific file to a single thread and
all metadata operations to a global master thread. Exclusive
assignment avoids complex locking within asynchronous
events [19], but at the cost of limiting scalability since multi-
ple threads cannot concurrently operate on the same file.
Finding #2: Polling limits file system performance.

3 An Overview of the AEoL1A Storage Stack

This section presents AEoLIA’s design goals (§3.1), explains
the design choices we made (§3.2) followed by an overview
of AroLia (§3.3), and finally discusses its limitations (§3.4).

3.1 Design Goals

We design AEOLIA to meet the following goals.

e High I/0O Performance. AEOLIA must minimize soft-
ware overhead in both the storage subsystem and the
file system, achieving high performance on both single-
core and multi-core setups.

e Coordinated Scheduling. Aeor1A should coordinate
thread scheduling to make multiple I/O- and compute-
intensive tasks run efficiently on the same core.

e Protected Sharing. AeoLia should allow untrusted
tasks to share the storage stack and the underlying
disk device.

e File System Support. Aroria should enable high-
performance file systems with low access latency and
excellent multicore scalability.

3.2 AEeovriA’s Unique Point in the Design Space

To meet design goals, we design AEOLIA as an interrupt-
based userspace storage stack, a new and unique point in
the design space.

We make this design choice based on the tradeoffs summa-
rized in Table 2. In the I/O notification dimension, we choose
interrupt over polling due to its advantages (§2). In the exe-
cution context dimension, we choose userspace over kernel
since the former enables a clean-slate design and avoids the

“generic tax” inherent in kernel stacks. Recent work also re-

ports other userspace benefits such as customization [54, 73]
and high development velocity [32, 49]. Table 3 summarizes
the key differences between Linux, uFS, and AEOLIA.

We next discuss how AEOLIA overcomes the two previ-
ously inherent disadvantages of a userspace stack: protected
sharing and coordinated scheduling.
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Figure 6. AEOLIA overview.

3.3 An Overview of AEOLIA Design

Components. Figure 6 shows AEoriA’s components: AEOK-
ERN, AEODRIVER, and AEOFS. AEOKERN is the typical ker-
nel module in userspace I/O stack design [40, 65], responsi-
ble for, e.g., configuring hardware, allocating resources (e.g.,
disk queue pairs), and maintaining access permissions. AEO-
DrivER is a library device driver, directly interacting with the
disk and offering high-level interfaces that abstract the disk.
AEOFS is a library file system building upon AEODRIVER,
offering POSIX interfaces to allow existing applications to
benefit from AeoLia without modification.

Target use cases. AEOLIA targets general-purpose OS use
and is designed to replace both traditional kernel-based stor-
age stacks and userspace polling-based storage stacks (e.g.,
SPDK). AeoL1A supports legacy applications, since it includes
AEOFS that offers conventional POSIX interfaces. Thanks to
AEODRIVER, similar to SPDK, AEOLIA can also be adapted to
specialized storage stacks, such as those used by databases.
Direct userspace access with user interrupts. AEro-
DrIvER achieves complete userspace I/O by directly han-
dling both I/O submissions and completions without kernel
involvement. In the submission path, the AEOKERN allocates
NVMe queue pairs to an AEODRIVER instance and maps the
queue pairs into the process address space, enabling Aeo-
DRrIVER to send requests to the disk directly. In the comple-
tion path, as further explained in §4.2, AEODRIVER leverages
user interrupts to deliver and handle storage interrupts in
the userspace, bypassing the kernel.

Protected sharing with intra-process isolation. Follow-
ing the conventional threat model, AEoLIA assumes that
userspace applications are untrusted. This threat model
means the storage stack must prevent applications from 1) ac-
cessing state without proper permissions; and 2) corrupting
any shared state, especially file system metadata. Meeting
these goals for a userspace stack is challenging. Prior work
either proposes new hardware support [23, 38, 56, 65, 70] or
prevents direct access by making the storage stack a privi-
leged process, such as uFS.

AroLiA meets the aforementioned goals by leveraging
standard hardware features to create trusted entities within
process address spaces (§5). The trusted entities execute
predefined code to prevent corruption from applications.
Specifically, AEODRIVER is a trusted entity enforcing access
permissions to each disk block. Part of the AEOFS is also a
trusted entity, ensuring that a process cannot corrupt shared
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metadata. To ensure integrity, the state of trusted entities re-
sides in a dedicated memory region that applications cannot
access. Entering a trusted entity only requires 40ns, much
faster than kernel trapping or IPC.

Coordinated scheduling. AroLia coordinates with thread
scheduling to enable multiple tasks sharing a single core. To
meet this goal, mechanism-wise, AEoL1A adds to its trusted
entities scheduling decision points (e.g., before returning
from the interrupt handler) to check if the current thread
should yield the core. AEoL1A’s scheduling decision points
are the same as the ones in the Linux kernel. Policy-wise,
following the spirit of the active checking policy (§2.1), AEo-
L1a only yields when necessary, where the next task should
run based on the scheduling policy. To achieve this, AEoL1A
must be aware of the current thread scheduling algorithm
and access the relevant scheduling state. However, neither
of these is available to userspace entities.

To overcome this challenge, AEOLIA uses the extensible

scheduler class(sched_ext [12]), a very recent eBPF-based
scheduling framework. AEOLIA uses sched_ext to define the
kernel scheduling algorithm and expose it to userspace, so
that AEoLIA is aware of the current scheduling policy. Specifi-
cally, as sched_ext uses eBPF maps to store all the scheduling
state, AEOLIA simply mmap the eBPF to expose such state to
the trusted entities of AEoLIA. Thanks to sched_ext, AEOLIA
is able to yield the core only when necessary.
Enabling an efficient file system. The design presented
above enables secure userspace access to the storage device,
thereby eliminating various performance bottlenecks (§2.2),
such as kernel trapping, IPC, and VFS.

Enabled by such design, as detailed in §7, AEOFS directly

performs all file system operations, including both data and
metadata operations, in the userspace, thereby achieving
great performance. Furthermore, AEOFS inherits the state
separation insights from Trio [73], a recent advancement in
userspace file systems, to achieve metadata integrity. Specif-
ically, enabled by the ability to add trusted entities in the
same address space, AEOFS introduces a file system trust
layer to enforce metadata integrity eagerly.
Putting it together. We next explain how AEOLIA’S compo-
nents work together. We refer the readers to Figure 6 again
for an overview of AEoLia components. When an applica-
tion issues a filesystem syscall, the thread enters AEOFS. For
syscalls that involve modifying metadata, the trusted layer of
AEOFS ensures that such modifications do not violate meta-
data integrity. Next, AEOFS translates the filesystem-level
operation into a block-level request and sends the request
to AEODRIVER. AEODRIVER, being a trusted entity, checks if
the application has the right permission to access the target
blocks. If so, AEODRIVER sends the request to the disk.

After issuing the I/O request, AEODRIVER checks if the
current thread should yield the core by reading the sched-
uling state in the eBPF maps of sched_ext. If so, the thread
enters the kernel to yield the core.



Upon request completion, AEODRIVER is notified via user
interrupts. Before returning from the interrupt handler, AEo-
Dr1vER checks again if the current thread should yield the
core. Eventually, AEODRIVER returns to AEOFS, and AEOFS
returns the syscall results to the application.

3.4 Limitations

One limitation is that interrupts are still slower than polling
when the I/O size is small (18.2% with 512B evaluated in §9.2).
We believe that this limitation is temporary since recent work
has made interrupts almost as fast as polling [21]. In addition,
such small storage requests are rare in practice. For example,
in the Alibaba block trace [1], over 95% of requests exceed
4KB. Another limitation is that AEoL1A depends on certain
hardware features. However, the design of AroLiA is gener-
ally applicable to mainstream ISAs. RISC-V also introduces
support for user interrupts [15]. Intra-process isolation is a
common feature, supported on ARM [2] and under active
exploration on RISC-V [26, 60]. Finally, AEOFS suffers from
extra overhead when multiple applications concurrently up-
date the same file or directory, as detailed in §9.4. This is a
general limitation of userspace library file systems [73].

4 AEODRIVER Design

This section presents the design of AEODRIVER by present-
ing 1) the relevant background for user interrupts (§4.1),
2) how to directly deliver storage interrupts to AEODRIVER
via user interrupts (§4.2), and 3) AEODRIVER’s data struc-
tures, exposed interfaces, and the workflow to process an
I/O request (§4.3).

4.1 User Interrupts

User interrupt [16, 17] is a hardware feature that directly
delivers interrupts to userspace processes, supported since
Intel Sapphire Rapids CPUs. The conventional use case is to
allow a process to bypass the kernel to send IPIs to another
process, thereby minimizing the associated overhead. A re-
cent patch from Intel added support for user interrupts to the
Linux kernel [20]. Delivering and handling user interrupts is
as fast as a regular interrupt, costing 0.6us on our machine.
Key hardware state. Figure 7 shows the key hardware
state for user interrupts. Each core is associated with five
model-specific registers: 1) UINV, which stores the interrupt
vector that should be delivered to userspace, 2) UIHANDLER,
which stores the address of the handler for user interrupts, 3)
UIRR, a bitmap where each set bit represents a pending inter-
rupt, 4) UPIDADDR and 5) UITTADDR, which store the memory
address of UPID (user posted interrupt descriptor) and UITT
(user interrupt target table), respectively. Two key fields in
UPID are PIR (posted-interrupt requests), a bitmap where
each set bit represents a posted interrupt, and destCPU, the
destination CPU ID of user IPIs.

User IPIs. A key data structure for user IPIs is UITT (Fig-
ure 7), which stores an array of entries, where each entry
stores 1) addrUPID: the address of the target UPID and 2) UV:
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Figure 7. Key hardware components of the user interrupt.

the user interrupt vector of the IPL. Sending user IPIs re-
quires a new instruction SENDUIPI, which takes as its input
operand an index of UITT. To execute SENDUIPI, the hard-
ware first finds the corresponding entry given the specified
index. The hardware then finds the target UPID based on
addrUPID, modifies the PIR field based on UV to post an in-
terrupt, and delivers the interrupts to the target core based
on the destCPU field.

User interrupt delivery. The hardware delivers a user
interrupt in two phases: identification (steps @ and @ below)
and signaling (steps @ and @).

@ Once a core receives an interrupt, it first checks if the
interrupt vector matches the one in UINV. If not, this interrupt
is handled as a regular interrupt. @ Otherwise, the hardware
moves the PIR field in UPID to UIRR, raising a pending user
interrupt, and clears the PIR field. @ Next, the core checks
if it is in userspace (ring 3). @ If so, the core executes the
interrupt handler whose address is stored in UTHANDLER.
Protection. Hardware only allows privileged software to
access the relevant MSRs using WRMSR and RDMSR instructions.
Furthermore, the OS must correctly set the page table to
prevent userspace processes from modifying UPID and UITT,
since otherwise, malicious processes may flood other cores
with user IPIs (by, e.g., modifying the destCPU field in UPID).

4.2 Enabling Userspace Storage Interrupts

A critical challenge AEOLIA encounters is that the current
user interrupt feature is not designed for disks. Follow-
ing §4.1, to deliver disk interrupts as user interrupts, the
software must ensure (1) the UINV register matches the disk
interrupt vectors to trigger step @ and (2) the PIR field in
the UPID region is filled to trigger step @. Meeting the first
requirement is simple: the kernel can configure UINV upon
AEODRIVER initialization and maintain it across thread con-
text switches. However, meeting the second requirement is
challenging. The hardware clears the PIR field in step @, and
thus the userspace interrupt handler must rewrite the PIR
field in UPID. However, UPID (or in general all user interrupts
hardware state) is designed for kernel access only (§4.1),
and thus cannot be modified by the userspace handler. One
possible way is to trap into the kernel to rewrite UPID, but
this loses much of the performance benefit of kernel bypass-
ing. Indeed, a key reason why a new instruction SENDUIPI
is needed is that SENDUIPI performs the checks and sets the
PIR field to enable userspace IPIs.

AEODRIVER overcomes this challenge by leveraging the
fact that UPID is a memory region instead of an MSR. There-
fore, upon AEODRIVER initialization, the kernel maps the



UPID into the address space of AEODRIVER, allowing the in-
terrupt handler to write the UPID directly. This design does
not create any security issues since 1) UPID resides in the
memory region of the trusted AEODRIVER, and 2) AEODRIVER
is a trusted entity.

Coexisting with other types of userspace interrupts.
We next propose a technique that enables AEODRIVER to co-
exist with UIPIs or other userspace device interrupts. With
our technique, other userspace device interrupts function
well. However, as detailed below, UIPIs may generate a spu-
rious interrupt, and this is a limitation of AEoOLIA.

Specifically, AEOLIA configures these interrupt sources
to share the same interrupt vector as the disk. In addition,
for device interrupts, AEOLIA programs the PIR in the same
manner as for the disk. For UIPIs, no special handling of the
PIR is required since the SENDUIPI instruction automatically
sets the PIR. With the above setup, both device interrupts
and UIPIs are delivered to the user interrupt handler.

Due to interrupt vector sharing, the interrupt handler
needs to identify the source of an interrupt (i.e., whether
it comes from the disk, a UIPI, or other devices). To do so,
for I/O devices, the handler checks the hardware comple-
tion queues for new entries. For UIPIs, the bit position in
the PIR set by SENDUIPI is stored on the stack of the inter-
rupt handler; therefore, the handler can simply check the
corresponding location on the stack to identify the source.

The above technique works well for devices. For UIPIs,
since 1) SENDUIPI sets another bit in PIR and 2) the hardware
triggers the same number of user interrupts as the number
of bits set in PIR, our technique causes a spurious interrupt.

4.3 AEODRIVER Data Structures and Interfaces

The rest of the AEODRIVER design is similar to a high-
performance userspace storage subsystem, e.g., SPDK, except
that it enforces access permissions for protected sharing
using a permission table, as detailed next.

The permission table. The permission table is an in-
memory bitmap recording, for each block, the read and write
access permissions for the current process. The permission
table supports conventional abstractions such as disk par-
titions and is initialized by obtaining relevant information
from AEOKERN. Other trusted entities can modify the per-
mission table using the provided APIs, as we detail next.
Interfaces. Table 4 shows the interfaces AEODRIVER ex-
poses to the upper-level storage stack. Most APIs are straight-
forward and AEODRIVER checks for the access permission
based on the permission table upon read/write_blk. A spe-
cial case is that AEODRIVER exposes interfaces to trusted enti-
ties to 1) access or modify blocks bypassing permissions with
read/write_blk_priv and 2) access or change the block ac-
cess permissions for the current process with get/set_perm.
The code entry routine rejects untrusted code to invoke these
APIs, while the trusted entities can directly invoke these APIs
since they are in the same protection domain.
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Group API Description
Device (D open_device(args, dev) Initiate disk data structures.
@ close_device(args, dev) Free disk data structures.
Queue Pair @ create_gp(args, dev, gp) Require a gpair form AEOKERN.
@ delete_gp(args, dev, gp) Release a qpair to AEOKERN.
DMA Buffer (® alloc_dma_buf(dev, buf, size) Allocate data buffers for DMA.

® free_dma_buf(dev, buf) Free DMA data buffers.

(D read_blk(gp, lba, cnt, buf)
®write_blk(gp, lba, cnt, buf)

Read blocks from the device.

/0 O ti
perations Write blocks to the device.

® read_priv(gp, lba, cnt, buf)
@write_priv(gp, lba, cnt, buf)

Read blocks with privilege.

Privileged /O Write blocks with privilege.

@) get_perm(blk, perm)
(@ set_perm(blk, perm)

Get block access permissions.
Set block access permissions.

Table 4. APIs provided by AEODRIVER.

Permission

5 Protecting Trusted Entities with MPK

This section discusses how AEOLIA creates trusted entities
in the address spaces of untrusted processes using MPK.
Background on MPK. Memory protection keys (MPK) [13],
supported since Intel Skylake processors [14], enable mem-
ory isolation within the same address space. Each page table
entry is tagged with a 4-bit to denote up to 16 protection
domains. A 32-bit per-core register PKRU controls the access
permissions to these protection domains, with each bit de-
noting a read/write permission to the corresponding domain.
Memory access is only permitted when both the page table
permissions and the PKRU register allow such access.

A key advantage of MPK is that the page access permis-
sions can be entirely changed in userspace, avoiding the
costly mprotect () system call. Specifically, userspace pro-
cesses can modify the PKRU register with a special instruction
WRPKRU, which only costs around 48 cycles on our machine.
Protecting trusted entities with MPK. To prevent the
trusted entities from being compromised, AEOLIA maintains
all memory state of the trusted entities within a dedicated
MPK protection domain. Therefore, ensuring the integrity
of the trusted entities boils down to enforcing the following
two invariants: @ Upon launching an Aeolia application, the
trusted entities are correctly set up (i.e., the intended trusted
entities are loaded and mapped to the dedicated protection
domain), and @ During runtime, only trusted entities can
modify the PKRU register.

I1: Correctly setting up the trusted entities . To enforce
this invariant, AEOLIA uses code signatures and a privileged
launching process. Before launching, a trusted user regis-
ters with the kernel the signatures of trusted entities. Upon
launching, the privileged launching process verifies that the
linked trusted entities match the registered signatures. If
so, the launching process mmaps the memory regions of
the trusted entities into the dedicated protected domain. Fi-
nally, the launching process executes the initialization code
of the trusted entities, drops the root privilege, and transfers
control to the application’s main function.

I2: Only trusted entities can modify the PKRU register.
AxoLia enforces this invariant as follows. First, upon launch-
ing, the privileged launching process inspects the binary of



the untrusted code to verify that it does not contain WRPKRU
instruction. Next, during runtime, AEOLIA prevents the un-
trusted code from inserting WRPKRU via self-modifying code.
Specifically, AEOKERN intercepts memory-management sys-
tem calls (e.g., nmmap and mprotect) and returns an error if
the call makes a page both writable and executable.
Invoking the interfaces exposed by trusted entities. AE-
OLIA enables the untrusted code to invoke trusted entities’
interfaces by including a dedicated entry routine as part of
the trusted entities. The entry routine executes WRPKRU to
grant access to the dedicated protected domain of the trusted
entities, switches the stack to the one used by the trusted en-
tities, and sets up arguments according to the calling conven-
tion. Returning from the trusted entity uses another routine
that performs the reversed steps.

We note that the MPK-related techniques in this section
directly follow prior work [63]. Our contribution lies in ap-
plying the techniques to userspace storage stacks, achieving
protection on commodity hardware, whereas related work
proposes new hardware support, as discussed in §3.3.

6 Coordinated Scheduling in AEoLIA

This section presents the mechanism (§6.1) and policy (§6.2)
that enable coordinated thread scheduling for AEoL1A. Our
current design aims to demonstrate that thread scheduling
is not an inherent disadvantage of userspace storage stacks
and, thus, closely mimics the kernel stack.

6.1 Scheduling Mechanism

As discussed in §3.3, AEor1A adds scheduling decision points
to its trusted entities to yield the core. Linux decides these
scheduling decision points in two steps. First, upon events
such as I/O interrupts that wake up a thread, the kernel sets
a reschedule flag in the currently running thread. Second,
when the thread returns from an interrupt or to userspace,
the kernel checks the flag and, if set, invokes the scheduler.

To match the first step, AEoLIA carefully handles out-of-
schedule user interrupts, as we detail next; for the second,
Arol1a invokes the scheduler after issuing an I/O request
and upon returning from the interrupt handler in AEODRIVER
or the trusted layer in AEOFS (§7.3).
Out-of-schedule user interrupts. An interesting issue
arises with handling out-of-schedule user interrupts, i.e., an
interrupt delivered when the user thread is currently not
running. The Intel kernel patch [20] handles those by mask-
ing such interrupts in the kernel, and thus, the interrupts are
only delivered when the target thread resumes execution.
However, this approach forgoes a key benefit of interrupts;
the thread scheduler does not receive immediate notification
when a thread is woken up and no longer blocked by I/O.
Hence, this approach renders AEoL1A susceptible to the same
high tail latency problem as SPDK (§2.1).

Instead, AeoriA handles out-of-schedule interrupts by
delivering them into the kernel, and thus correctly sets up the
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1 # Called at Aeolia scheduling points

2 # @sched_info: Read-only scheduling state exposed by BPF maps.
3 def user_try_yield(sched_info):

4 if sched_info.nr_running > 1: # There are other tasks

5 curr_info = sched_info.current # Read current state

6 cand_info = sched_info.candidate

7 exec_time = now() - curr_info.exec_start

8 # Simulate scheduling state update based on execution

9 # time and scheduling policy

10 # (e.g., vruntime and deadline for EEVDF)

11 mock_update_curr(curr_info, cand_info, exec_time)
12 # Simulate scheduling policy

13 if need_resched(curr_info, cand_info):

14 sched_yield() # Voluntarily yield the CPU

Figure 8. Pseudocode of AroL1A’s yield.

reschedule flag. AEOLIA achieves this by assigning different
user interrupt vectors for different threads (§4.2), so that the
interrupt vector of an out-of-schedule interrupt will always
mismatch the current UINV register, thus delivered to the
kernel as a regular interrupt (@ in §4.1).

This approach introduces another interesting issue. Since
the storage stack is in userspace, the kernel interrupt handler
cannot handle I/O, and thus, AEoLIA must still invoke the
userspace interrupt handler. Setting hardware in the kernel
to redeliver the user interrupt incurs another interrupt over-
head of 0.6us. Instead, AEoL1A changes the saved register and
stack context of the target thread to insert a stack frame for
the userspace interrupt handler. Therefore, upon returning
from the kernel, the target thread first executes the userspace
interrupt handler and returns to the point where it traps.

6.2 Scheduling Policy

As discussed in §3.3, to enable AroL1A to yield only neces-
sary, AEOLIA leverages sched_ext. The sched_ext is a very
recent feature supported since the release of Linux 6.12 in
November 2024. sched_ext enables users to define custom
kernel thread scheduling policies by exposing a set of hook-
point functions, each triggered by a specific scheduling event.
sched_ext is implemented using eBPF [3], which allows safe
and efficient injection of a custom scheduling policy into the
kernel without modifying the kernel scheduler code.

With sched_ext, AEOLIA uses as its scheduling policy the
Earliest Eligible Virtual Deadline First (EEVDF) policy in the
latest Linux kernel. AEOLIA maintains the same scheduler
state as EEVDF in eBPF maps (e.g., run queue, virtual runtime,
number of runnable threads, deadline) and implements the
same scheduling policy at each scheduling hook function as
EEVDF. Next, AEOLIA exposes the scheduling state in eBPF
maps to its trusted entities.

Enabled by the above, as shown in Figure 8, AEOLIA yields
the core only when necessary. At each scheduling design
point, the function inspects the scheduling state exposed by
the kernel (lines 4-7, e.g., the number of runnable tasks and
the candidate task’s priority or deadline). If multiple tasks
are runnable and the policy demands a rescheduling (lines
11-13), it calls sched_yield() to enter the kernel for the actual
task switch (line 14). Otherwise, it continues execution in
user space, minimizing unnecessary kernel crossings.



Regular File Cache
RW Range Lock

Directory Cache

RW
inode ﬂ Lock
Array

Core

State l super block Iblock bitmaplinode bitmapl data blocks: file, directory I journaling l
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7 AEOFS Design

This section presents AEOFS, a highly scalable POSIX-like
library file system building on top of AEODRIVER. AEOFS bor-
rows the key insight of state separation from Trio (§7.1) but
comes with a different design to better suit modern NVMe
disks (§7.2). AEOFS further introduces eager integrity check-
ing (§7.3) and ensures crash consistency via journaling (§7.4).

7.1 The Trio Architecture and Its Limitations

AEOFS builds on top of the key insight from Trio [73], a
library file system (LibFS) architecture originally designed
for non-volatile main memory (NVMM). The key insight is
that the file system state can be separated into core state and
auxiliary state. The core state contains critical metadata that
must never be lost (e.g., access permissions) and is stored in a
simple, fixed layout shared by all LibFS instances to enforce
integrity. The auxiliary state (e.g., caches, file descriptors) is
private to each LibFS instance, can be freely customized, and
can be rebuilt from the core state.

Leveraging this key insight, Trio employs a trusted veri-
fier to lazily maintain metadata integrity. Specifically, Trio
enables each LibFS to modify metadata directly. A privileged
trusted verifier is invoked to check for metadata corruption
when a LibFS releases a file to the kernel. If the check fails,
Trio rolls back the file state to a previous checkpoint con-
ducted when a LibFS acquires the file.

However, directly adopting Trio for AEOFS on NVMe SSDs
presents two challenges. First, Trio’s state organization is
tailored for NVMM and assumes MMU-based access con-
trol, making it ill-suited for block devices that require dif-
ferent protection mechanisms. Second, the lazy verification
approach postpones metadata integrity validation. This re-
quires a careful design of the verifier to ensure correctness.
Furthermore, if the verification fails, all updates since the
previous checkpoint are lost.

7.2 Scalable Data Structures for NVMe

Core state. Figure 9 shows the on-disk core state of AEOFS,
consisting of a superblock, inode/block usage bitmaps, an
inode table, data blocks, and dedicated journaling regions,
similar to ext4. A file consists of index blocks and data blocks.
Each entry of an index block points to a data block, with the
last entry pointing to the next index block. The file records
the first index block in its inode. A directory stores directory
entries in its data blocks; each entry contains the file’s inode
number, the file name, name length, and the entry size.
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Scalable auxiliary state. The in-memory auxiliary state
contains all state related to file descriptors and three caches:
page cache, directory entry cache, and inode cache. AEOFS
maintains a per-core file descriptor allocator to maximize
performance. Each regular file consists of a page cache where
AEOFS uses a radix tree to map file offset to a cached data
page. The page cache is protected with a readers-writer range
lock, allowing concurrent reads on the same pages and con-
current writes to disjoint pages. For each directory, AEOFS
uses a resizable chained concurrent hash table to map a
file name to the cached directory entry. Each bucket in the
hash table is associated with a readers-writer lock, allowing
concurrent reads from the directory while minimizing con-
tention for file inserts/deletes. Finally, AEOFS caches inode
state in memory, where each inode entry is protected with a
dedicated readers-writer lock.

Discussion. Our state design targets block devices, differing
from Trio, which targets NVMM, in the following way. Since
NVMM relies on MMU to enforce access permissions, to
support direct userspace handling of stat and create, Trio
colocates the inode of a file with its directory entry. This
design complicates supporting certain file system features (“”,
7, hard links). As detailed in the next subsection, our design
uses software trusted entities to enforce access permissions,
thus avoiding these issues.

7.3 Ensuring File System Integrity

Eager integrity checking. AEOFS performs eager metadata
integrity checks rather than the lazy style adopted in Trio
and Recon [30], thereby overcoming the aforementioned lim-
itations (§7.1). This is enabled by AroriA’s technique (§5) to
introduce trusted entities. Specifically, AEOFS consists of a
trusted layer, which maintains core state and is protected
from the untrusted code. The rest of AEOFS forms an un-
trusted layer, which maintains auxiliary state. The untrusted
layer accesses the core state only through the well-defined
interfaces exposed by the trusted layer (Table 5).

Upon each interface invocation, the trusted layer performs
the same set of validations as a kernel file system to ensure
the operation does not violate metadata integrity. Some crit-
ical checks include: (1) for all operations, verifying that the
caller has the right permission (2) for update_inode, checks
that the field is valid (e.g., the file type must be either a di-
rectory or a regular file) (3) for create_in_dir, checks that
the new directory entry is valid (e.g., the new entry does
not share the same name as another entry under the same
directory) (4) for remove_dir and rename, checks that the di-
rectory hierarchy remains a connected tree without dangling
files or forming a cycle.

With this design, AEOFS provides the same metadata con-
sistency guarantees as a kernel file system: a malicious pro-
cess may corrupt only its private auxiliary state, but not the
shared core state, and thus cannot affect other processes.



Group API Description

Read an inode information.

Read a index page of a file.

Read a dentry page of a directory.
Update a field of an inode.

Write all core state to disk.

@ query_inode (inode)

@ query_index_page (inode)

@ query_dentry_page (inode)

@ update_inode(inode, field, value)
® sync(void)

. . ® truncate_file(file, length)
File O i
He Vperations: @) append_file(file, length)

Inode State

Decrease file length.
Increase file length.

create_in_dir(dir, inode)
Dir Operations (9 remove_in_dir(dir, inode)
({0 rename(o_dir, o_inode, n_dir)

Create a file/dir in a directory.
remove a file/dir in a directory.
rename a file/dir.

Table 5. APIs provided by the file system trusted layer.

AEOFS performs eager checking for the following reasons.

First, unlike lazy checking, eager checking is easier to reason
about correctness and avoids progress loss. Second, due to
in-memory caching, handling fsync in an SSD file system is
more convoluted than in an NVMM file system, which almost
forgoes caching [28, 64, 72, 73]. Adding the complicated
integrity checks exacerbates the already error-prone and
lengthy handling of fsync [30]. The tradeoff is that, during
normal operation, eager checking may require a domain
switch to the trusted entity (§5), but this only incurs a small
85-cycle overhead.
Handling file system operations. Upon initialization, the
trusted layer sets the permission table in AEODRIVER (§4.2)
to prevent the untrusted layer from accessing any block in
the file system. During normal operations, the untrusted
layer handles file system operations with its cached state. It
invokes the trusted layer upon 1) cache misses to read core
state or 2) operations involving modifying core state (e.g.,
creating a file).

The trusted layer maintains its own inode and directory
entry cache. For each access, it checks 1) the access per-
missions with the inode cache, and 2) metadata integrity
violation (e.g., introduces a loop in the directory tree) with
both caches. If the check passes, for read accesses, the trusted
layer invokes AEODRIVER to handle them; for write requests,
the trusted layer prepares in-memory journal entries.

7.4 Crash Consistency

Crash consistency mode. AeoFS follows the ordered mode,
the default option in ext4. Only metadata is journaled, and
the relevant file data persists on the disk before metadata
journaling. AEOFS follows ext4 on fsync semantics [10, 61]
by persisting both the specified file and all in-memory jour-
nals. This aligns with the goal of simplifying handling fsync
behind eager integrity checking. We test AEOFS’ crash consis-
tency with unit tests during development but do not evaluate
it with testing frameworks such as CrashMonkey [52].

Crash consistency mechanism. AEOFS uses the standard
block-level physical redo journaling. Only the trusted layer
handles journaling, preparing in-memory journal entries
upon requests to modify core state. The trusted layer reuses
locks in its caches to serialize concurrent writes to the same
file. A start and a commit block are added to journal trans-
actions bigger than the block size. To maximize scalability,
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AEOFS employs per-thread journaling, where each transac-
tion is timestamped by rdtsc.

Upon fsync, the untrusted layer persists all the dirty pages
in its cache and enters the trusted layer to commit the jour-
nal. A critical challenge in prior per-core journaling de-
sign [22, 41] is to correctly handle journals writing to the
same block from different cores. Since fsync flushes all in-
memory journals, AEOFS resolves this issue by locking every
per-thread journaling region, merging transactions writing
to the same block on their timestamp, and then committing
them. Upon a crash, the committed journal is replayed.

8 Implementation

We implement AEOLIA in the Linux 6.12.20 kernel. The AEoK-
ERN, AEODRIVER, and AEOFS have 3992, 1889, and 11870
lines of code, respectively. Our implementation fulfills all
the presented design, except for the I1 part in §5; we have
not implemented the code for signature registration and
the privileged launching process. Rather, we directly map
the memory state of the trusted entities to the dedicated
protection domain. We believe that there are no inherent
challenges to the implementation, but rather that it requires
more engineering efforts.
Validating Aeovr1A Protection. To validate the protection,
we simulate malicious and buggy applications by handcraft-
ing 96 attacks , which stress all AEOLIA’S trusted entities:
AEOKERN, AEODRIVER, and the trust layer of AEOFS. In all
test cases, AEOLIA successfully defends from the attacks.
These attacks are conducted by the untrusted part of the
process, with the goal of bypassing the protection in the
trusted layer. Specifically, the untrusted code performs two
categories of attacks: (i) Access violations, such as directly
modifying queue pair or user interrupt data structures (e.g.,
UPID); (ii) File system corruptions, such as creating files
with illegal names (e.g., containing “/”) or forming cyclic or
disconnected directory structures.

9 Evaluation

9.1 Evaluation Setup

Environment. Our experiment machine has four NUMA
nodes equipped with 128-core Xeon Platinum 8592 proces-
sors and an Intel Optane SSD P5800X SSD [36]. We note that
AEroL1A supports all NVMe SSDs and does not rely on any
Optane-specific features. Rather, we choose Optane since it
represents the worst case for AEOLIA: its low access latency
maximizes the impact of AEoLI1A’s interrupt overhead. The
system runs Ubuntu 22.04 and Linux kernel 6.12.20. We dis-
able hyperthreading, turbo boost, and power saving mode
to obtain stable results.

Baseline. We compare AEODRIVER with SPDK [62] and two
variances of the Linux kernel stack: POSIX (the default POSIX
interfaces), and io_uring [9]. We tune the performance of
the kernel stack by enhancing it with blk-switch [34] and
disabling KPTI. We compare AEOFS with uFS [48], ext4 [4],
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Figure 10. Single thread performance of storage subsystems.

and f2fs [44]. uFS is a research file system, while the other
two are mature kernel file systems. All evaluated systems
use the default configuration.

Workload. We use fio [6] to stress both the storage sub-
system and the file system by simulating both throughput-
bound and latency-critical I/O tasks. We use FXMARK [51]
to evaluate the multicore scalability of the file systems. We
use as file system macrobenchmarks Webserver, Fileserver,
Webproxy, and Varmail in Filebench [5] and LevelDB [11].

9.2 AEODRIVER Performance

Single-thread performance. Figure 10 shows the single-
thread performance of AEoDRIVER with increasing I/O sizes.
With small access sizes, AEODRIVER significantly outper-
forms the conventional interrupt-based kernel storage stacks.
Specifically, with the 512B size, compared to POSIX, AEO-
DrIVER achieves 2x higher throughput, 48% lower median
latency and 26% lower tail latency. With a larger size of 8KB,
AEODRIVER achieves 1.54x higher throughput, 36% lower
median latency, and 21% lower tail latency.

AEODRIVER delivers similar performance to SPDK across
most I/O sizes, except for small requests below 4KB. In the
worst case, with 512B read, AEODRIVER incurs 10.7% lower
throughput, 18.2% higher median latency, and 6.1% higher
tail latency. This is because the interrupt overhead (0.6us) be-
comes non-negligible compared to the access latency (3.2us).

For larger I/O size, we omit the tail latency iou_poll from
the figure since it is significantly larger than the others (4 ms
to 6 ms with access size larger than 128 KB). AEODRIVER and

489

(a) Read: median latency (b) Read: tail latency (p99.9)

80

64

POSIX iou_poll
g 4| foudn * o 60 SPDK x o
g 40 - 5
5 oh.2. 4 8, 16
N % zv,‘z‘z‘ % 7 D %
2 D D D %, ", 9, %, D % % % %, ", % %,

(c) Write: median latency
64

(d) Write: tail latency (p99.9)

64 96

48 - 72

32 48

Latency (us)

16 [ 24

A S S T
% % %

5, %
v %D % D
10PS (k)

“
© 10PS (k)

Figure 11. Multi-thread performance of storage subsystems.

(a) Single core: latency-task tail latency (p99.9) (b) Single core: compute-task performance

50 24
POSIX K
7375 | loudfl O3 218
£ iou_poll g
z 25| SPDK 2121
< Aeolia I § i
k=1 ~<
=125 506 H
3
ol—on onle foim fil fof = (L (00 (018 H1ER U0 AT
1 2 4 8 12 1 2 4 8 12
(c) 4 cores: latency-task tail latency (p99.9) (d) 4 cores: compute-task performance
8 - 47
2
= g 5L
Z o4r g 3
= 3
£0.06 2 2F
g g
]
~0.03 ” L g 1r
5
o _Mon Mo Ml | I & o LIl I e

1 2 4 8 12 1

2 4 8
# Latency-Task # Latency-Task

Figure 12. I/O-intensive task and compute-intensive task co-run.

SPDK saturate the disk write performance with 1MB access
size, while others cannot. In general, AEODRIVER outper-
forms POSIX by 1.1x to 1.36x in throughput, 10% to 27% in
median latency, and 10% to 20% in tail latency.

We note that, in some cases, AEODRIVER also slightly out-
performs SPDK. We believe that this small improvement is
not inherent, but rather due to reasons such as the memory
alignment in AEODRIVER happens to fit the cache better.

The results conform to our analysis §2, AEODRIVER outper-
forms kernel storage stack, due to eliminating layering and
kernel trapping overhead, while performing slightly worse
than SPDK, due to the small overhead incurred by interrupt.
Multi-thread performance. Figure 11 shows the multi-
thread performance with 4KB I/O size. AEODRIVER and SPDK
scale well, saturating the disk with 8 threads. POSIX and
io_uring have comparable performance. AEODRIVER outper-
forms POSIX/io_uring by up to 1.18x, respectively. iou_poll
shows a performance bottleneck with 16 threads.
Summary. Across various I/O sizes and thread counts,
interrupt-based AEODRIVER consistently outperforms Linux,
due to direct disk access, and performs similarly to SPDK.

9.3 Coordinated Scheduling with Different Tasks
This subsection evaluates whether AEOLIA meets its coordi-

nated scheduling design goals (§3.1). Figure 12 shows 1 and
4 cores running latency-critical (LC) I/O tasks (I/O size: 4KB,
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Figure 13. Latency-task and throughput-task co-run.

I/O depth: 1) with one compute-intensive task (swaptions in
PARSEC, following prior work [53]). Figure 13 shows 1 and
4 cores running LC tasks with one throughput-intensive(TP)
task (I/O size: 64KB, I/O depth: 16).

As expected, the interrupt-based storage stacks perform
better than polling ones. Polling-based methods suffer signif-
icant tail latency (4ms at 1 LC task and 48ms at 12 LC tasks
on a single core), while interrupt-based ones keep low tail
latency. AEODRIVER outperforms iou_poll/SPDK by 8.18x
to 291.72x when running LC tasks and compute-intensive
tasks, and 1.11x to 250.5x when running LC and TP tasks.

AEODRIVER, like kernel storage stacks, avoids CPU con-
tention, while outperforming them due to direct device ac-
cess. For running I/O tasks and compute-intensive tasks,
with LC tasks increasing, AEODRIVER outperforms POSIX and
io_uring by up to 1.28x for I/O tasks and 1.95x for compute-
intensive tasks. For running LC and TP tasks, AEODRIVER
achieves throughput comparable to io_uring, while reduc-
ing tail latency by 9.8% to 48.9%. AEODRIVER outperforms
POSIX by 1.3x to 3.7x in total throughput.

These results meet our expectations. With polling, the high
tail latency of LC tasks is because the thread is preempted
just after it sends a request, and thus, the thread has to wait
for one or several time slices to handle the sent request.
In addition, with polling, compute tasks and TP tasks suffer
because they get less CPU time due to cycle waste in LC tasks.
Interrupt does not suffer from these limitations, leading to
better performance. AEoLIA further outperforms io_uring
and POSIX, since its software overhead is smaller, thereby
achieving lower tail latency while also granting more time
for other tasks (since, for the same amount of I/O, less time
is wasted in the storage stack).

Summary. AEroLiA efficiently coordinates scheduling, sig-
nificantly outperforming polling-based stacks with user in-
terrupts and kernel stacks with lower software I/O overhead.

9.4 AEOFS Performance

This subsection evaluates whether AEOLIA enables a high-
performance, scalable, and protected file system design. All
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Figure 14. Single-thread performance of evaluated file systems.

the reported results of AEOFS include the overhead of check-
ing metadata integrity and journaling.

Single-thread performance. Figure 14 shows the single-
thread performance of the evaluated file systems. With a 4KB
access size, AEOFS outperforms ext4 and £2£s by up to 12.6x
and 12.8x, respectively, primarily due to direct userspace ac-
cess that avoids the kernel overhead. AEOFS also outperforms
uFS by 3.96x and 4x in read and write operations, respec-
tively, by eliminating the overhead of IPC. With the 2MB
access size, AEOFS outperforms ext4 and £2£s by up to 1.6x.
This is because the increased I/O size reduces the frequency
of kernel layering and scheduling for ext4 and f2fs.

Metadata workloads include opening and stating a file in
a five-level directory, creating an empty file, and deleting
files in a directory. AEOFS outperforms ext4, £2fs, and uFS
by up to 7.1x, 10.6x and 21.3x, respectively. uFS suffers from
performance degradation due to its frequent IPCs.
Multi-thread performance. Figure 15 and Figure 16 show
the multi-thread performance of the evaluated file systems
on data and metadata workloads. For data operations, AEOFS
scales effectively with increasing threads, while all other file
systems suffer from severe scalability bottlenecks. For ex-
ample, under a 2MB write workload with 64 threads, AEOFS
outperforms ext4, £2fs, and uFS by 19.1x, 28.9x, and 8.4x,
respectively. For both 4KB and 2MB access, ext4 and f2fs
suffer from severe scalability issues due to well-known bottle-
necks in the VFS layer [51]. uFS shows limited performance
under 4KB accesses, due to its frequent IPCs.

For metadata scalability, we show key ones in FXMARK, in-
cluding that each thread @ opens a private/random/same file
in five-depth directories (MRPL/MRPM/MRPH); @ unlinks
an empty file in a private/shared directory (MWUL/MWUM);
© creates an empty file in a private/shared direc-
tory (MWCL/MWCM), and @ renames a file to a pri-
vate/shared directory (MWRL, MWRM). We omit the rest
due to space limitations; AEOFS achieves similar scalability
results as the key ones.

Both ext4 and f2fs suffer from severe scalability bottle-
necks due to coarse-grained kernel locking, such as global
locks on the directory cache, inode cache, and directory in-
odes. uFS, by design, delegates all directory-related metadata
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ext4 f2fs AEOFS uFs
4KB append 0.76 GiB/s 0.75 GiB/s 1.12GiB/s 2.74GiB/s
Create 42 kop/s 30 kop/s 58 kop/s 254 kop/s
Remove 115 kop/s  85kop/s 132 kop/s 186 kop/s

Table 6. Performance of AEOFS when two threads concurrently
update the same file.

operations to a single primary worker (§2.2). As a result, its
throughput does not increase with more threads.

AEOFS scales well across all metadata operations. For ex-
ample, in the case of creating files in private directories,
AEOFS outperforms ext4, £2fs, and uFS by 2.8x, 21.9x, and
31.9x, respectively. AEOFS eventually encounters scalability
bottlenecks. Further analysis reveals that the bottleneck is
the hash rehashing and contention on the dentry hash.
File sharing cost When multiple untrusted applications
concurrently update a file, AEOFS incurs a sharing overhead
due to the need to rebuild the file’s auxiliary state and per-
form an immediate fsync after each operation. We evaluate
this overhead using three workloads. Two applications con-
currently: (1) append 4KB to a file to 1GB, (2) create 10,000
empty files in a shared directory, and (3) delete 10,000 files
from a shared directory. Table 6 presents the results. While
AEOFS still outperforms ext4 and f2fs by up to 1.5x and
1.9x, respectively, it falls behind uFS in all three cases. This
is because uFS, with its centralized design, avoids the syn-
chronization overhead.

491

Name # Files Avg. file size I/O size (r/'w) R/W
Fileserver 10K 1MB 1MB / 1IMB 1:2
Webserver 10K 1MB 1IMB /256KB  10:1
Webproxy 50K 512KB 1MB / 16KB 5:1

Varmail 100K 16KB 1MB / 16KB 1:1

Table 7. Filebench workloads configurations
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Figure 18. Filebench results.
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write operation being
immediately followed by an fsync to ensure data persistence.
We compare Aeoria with using polling instead of user
interrupt (+poll), using user interrupt but yielding to kernel
idle task (+k_yield), and using kernel interrupt (+k_intr).
The results prove our analysis in §2.1, showing that, with
a suitable scheduling policy, polling offers only little
performance improvements over interrupts. The kernel
scheduler’s suboptimal policy leads to a performance
degradation of 10.6%. The poor performance of the kernel
interrupt is primarily due to the overhead of forwarding
kernel interrupts to userspace, i.e., via eventfd, as previously
reported in [46].

Macrobenchmarks performance. We use Fileserver, Web-
server, Webproxy, and Varmail in Filebench with the con-
figuration shown in Table 7. With our setup, we were unable
to reproduce stable runs of uFS, likely due to configuration
differences. Figure 18 shows the result. AEOFS outperforms
ext4 and f£2fs by up to 3.1x and 6.6x, respectively.

To provide a fairer comparison, we further evaluate AE-
OFS using the configuration parameters provided in the uFS
repository, in which Varmail and Webserver are executed
with smaller workloads. As shown in Figure 19, under these
settings, AEOFS outperforms uFS by up to 1.33x.

We evaluate LevelDB using db_bench with its default con-
figuration. It runs with a single thread and populates the
database with one million key-value pairs. Except for the
Fill100K test, all other tests use the default value size of 100
bytes. As shown in Table 8, AEOFS outperforms ext4, f2fs,

Figure 17. AEoLIA breakdown.
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Figure 19. Filebench results under uFS setups.

Throughput(ops/ms) ext4 f2fs uFS AEOFS
Fill 100K 333 332 0.73 5.98
Fill sequential 649 540 1,028 1,829
Fill sync 19 19 19 55

Fill random 492 425 339 686
Read random 203 196 372 419
Delete random 537 470 852 1,543

Table 8. LevelDB Throughput

and uFS by up to 2.9x, 3.4x, and 8.2x, respectively. uFS per-
forms poorly in the Fill100K test due to frequent file append
operations. Since uFS exhibits limited performance in meta-
data operations, such workloads incur significant overhead.
Summary. AEOLIA enables a file system that achieves low
latency, high throughput, and great multicore scalability.

10 Discussion

Relevance under hardware trends. Existing low-latency
SSDs still exhibit a latency of around 5 ps, making the inter-
rupt overhead imposed by AroLia insignificant. While the
latency of modern SSDs is expected to decrease, we believe
that the interrupt overhead will follow, making AEoLIA stay
relevant. For instance, recent work [21] proposes techniques
that reduce interrupt overhead to less than 250 CPU cycles,
further narrowing the gap between interrupts and polling.
Generality beyond storage. Although AroLia focuses on
storage, we believe that its techniques are generally applica-
ble to other domains. For example, we have verified that the
techniques presented in §4.2 can deliver NIC interrupts to
userspace. AEOLIA’s protection and scheduling techniques
are also applicable to a networking stack. We view AroLiA
as a first step towards a complete kernel-bypassing solution,
potentially leading to a unified userspace I/O stack spanning
both storage and networking.

11 Related Work

High-performance storage stacks. blk-switch [34] is
a recent advancement for kernel storage stacks. It rearchi-
tects the Linux block layer similarly to a networking switch,
introducing per-core multi-egress queues. blk-switch pri-
oritizes scheduling latency-sensitive requests and leverages
fine-grained request steering and coarse-grained application
steering for load balancing, thereby minimizing head-of-line
blocking to achieve both low latency and high throughput.
XRP [71] optimizes the traditional kernel storage stack by
reducing kernel trapping and layering overhead. Specifically,
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XRP allows applications to register user-defined storage func-
tions (e.g., index lookups or aggregations), which are exe-
cuted directly inside the NVMe driver. By propagating kernel
state to the driver, XRP preserves file system semantics while
safely bypassing most layers of the kernel storage stack.
Unlike the aforementioned prior work, AEoL1A focuses on
userspace interrupt-based stacks with direct device access
and trusted entities, tackling the challenges of achieving
userspace isolation and coordination.

Prior works utilizing user interrupts. xUI [21] extends
existing hardware with a tracked interrupt mechanism that
reduces delivery cost, hardware safepoints for precise pre-
emption, kernel-bypass timers that avoid expensive OS mech-
anisms, and interrupt forwarding that delivers device events
directly to user threads. Much other prior related work fo-
cuses on userspace thread scheduling [31, 33, 37, 46, 47]. For
example, LibPreemptible [46] proposes a high-performance
user-level timer by polling the timestamp counter and using
SENDUTIPI as a deadline notification mechanism. Skyloft [37]
is a concurrent work with AeoL1A that delivers timer inter-
rupts directly to userspace entities. The techniques to enable
userspace device interrupts in Skyloft and AeoLia differ,
but we believe they are, in essence, identical.

12 Conclusion

This paper presents AEOLIA, a userspace interrupt-based
storage stack that achieves high I/O performance with direct
userspace accesses while enabling multiple untrusted tasks
to @ securely share a disk and @ efficiently share a CPU
core. AEOLIA represents a new point in the design space pre-
viously considered unfeasible. AEOLIA is motivated by our
findings that interrupts outperform polling in many aspects,
with only a slight I/O performance disadvantage. The de-
sign of AEOLIA overcomes several disadvantages previously
viewed as inherent in userspace storage stacks, including
delivering storage interrupts to userspace, adding trusted
entities for protected sharing, and using sched_ext to coor-
dinate with kernel schedulers. We further design AEOFS, a
high-performance POSIX-like generic file system with ex-
cellent scalability. Our evaluation shows that AEODRIVER
performs similarly to SPDK for individual tasks, outperforms
SPDK by 291X upon core sharing. AEOFS consistently outper-
forms other file systems by several orders of magnitude. Our
artifact is publicly available at https://github.com/TELOS-
syslab/Aeolia.
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