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Abstract
Polling-based userspace storage stacks achieve great I/O

performance. However, they cannot efficiently and securely

share disks and CPUs among multiple tasks. In contrast,

interrupt-based kernel stacks inherently suffer from subpar

I/O performance but achieve advantages in resource sharing.

We present Aeolia, a novel storage stack that achieves

great I/O performance while offering efficient and secure re-

source sharing. Aeolia is an interrupt-based userspace stor-

age stack, representing a new point in the design space pre-

viously considered unfeasible. Our main observation is that,

contrary to conventional wisdom, polling offers only mar-

ginal disk performance improvements over interrupts. Ae-

olia exploits user interrupt, an emerging hardware feature

commonly used for userspace IPIs, in a novel way to deliver

storage interrupts directly to userspace, thereby achieving

high I/O performance with direct access. Aeolia leverages

the hardware intra-process isolation features and sched_ext,

an eBPF-based userspace scheduling framework, to efficiently

and securely share CPUs and disks among multiple tasks,

challenging the common belief that these are inherent dis-

advantages of userspace storage stacks. The above design

enables Aeolia to realize AeoFS, a high-performance library

file system that securely and directly accesses disks. Our
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1 Introduction
Advancements in storage medium (e.g., Samsung’s Z-

NAND [58], Kioxia’s XL-Flash [43], and Intel’s 3D

XPoint [35]) enable modern NVMe SSDs [36, 42, 59] to

achieve ultra-low latency (in the scale of a few 𝜇s) and mil-

lions of IOPS. Such orders-of-magnitude improvements over

conventional devices pose a significant challenge for storage

stacks to utilize disk performance efficiently.

Existing high-performance storage stacks fall into two

classes: userspace polling-based ones [40, 48, 67] and kernel

interrupt-based ones [34, 45, 55, 69, 71]. Both classes couple

two orthogonal axes in the design space: 1 userspace vs.

kernel and 2 polling vs. interrupt. Due to such coupling, the

rest of the design space remains unexplored. Furthermore,

as summarized in Table 1 and detailed next, neither design

achieves all the desired properties of a storage stack.

Polling-based userspace storage stacks [40, 48, 67] offer

great I/O performance, since the storage stack directly ac-

cesses disks, thereby bypassing the kernel and various asso-

ciated overheads (e.g., kernel trapping, layering). However,
this design prevents multiple tasks from sharing storage and

computation resources. Specifically, since there is no trusted

entity mediating access, multiple untrusted tasks cannot

share a disk. Furthermore, recent studies [34, 71] also reveal
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Figure 1. Comparison of storage stack architectures. Aeolia is an

interrupt-based userspace storage stack, representing a new point

in the design space. Aeolia is enabled by 1) our insights in one

axis of the design space, i.e., polling vs. interrupts; and 2) our novel

design in another axis, i.e., kernel vs. userspace, by overcoming

previously considered inherent disadvantages for userspace stack.

that when multiple tasks share a CPU, a userspace storage

stack incurs high I/O tail latency, since it cannot coordinate

with the kernel thread scheduler.

Conventional interrupt-based kernel storage stacks [34,

45, 55, 69, 71] overcome the aforementioned drawbacks

of userspace stacks to efficiently and securely share re-

sources among multiple tasks. However, a kernel stack suf-

fers from inherent challenges in achieving high I/O perfor-

mance [25, 39, 51, 74]. Thus, despite a long list of enhance-

ments, it still cannot match the performance of a userspace

one. Finally, both storage stacks fall short in supporting high-

performance file systems with good multicore scalability.

This paper presents Aeolia, a userspace interrupt-based

storage stack that achieves all key properties listed in Table 1.

To design Aeolia, we first examine one axis of the design

space by evaluating polling and interrupts, the two funda-

mental approaches to I/O completion. Our first key finding

is that, contrary to the conventional wisdom [27, 57, 66, 67],

polling only offers marginal I/O performance improvements

over interrupts. Most overhead previously attributed to inter-

rupts actually stems not from the interrupt itself but rather

kernel thread scheduling policies that no longer suit fast stor-

age devices. By proposing an active checking policy, we find

that interrupt achieves similar I/O performance as polling.

Our second key finding is that while polling may improve

I/O performance, its excessive CPU usage imposes inher-

ent limitations on building high-performance file systems.

We reach this finding by examining uFS [48], a file system

building upon SPDK [62, 67]. To ensure protected sharing

and minimize CPU usage, uFS runs in a separate process

with dedicated threads that handle file system requests; ap-

plications communicate with uFS via IPC. Despite efforts to

reduce IPC cost [50], we find that IPC still incurs excessive

software overhead (e.g., 400ns). Furthermore, as our eval-

uation in §9.4 shows, polling poses inherent challenges to

file system multicore scalability, since its high CPU usage

reduces the effective contribution of each core.

The key takeaway from our analysis is that interrupts

offer several advantages over polling while incurring only a

small performance disadvantage.

User Poll

[40, 48, 67]

Kernel INTR

[34, 45, 55, 69, 71]

Aeolia

High I/O Performance ✓ × ✓
Coordinated Scheduling × ✓ ✓

Protected Sharing × ✓ ✓
High-Performance File System × × ✓

Table 1. Desired properties of storage stack.

Based on our analysis, we conclude that userspace

interrupt-based storage stacks represent a new and useful

point in the design space. It benefits from interrupts without

suffering from kernel performance overheads. However, no

such storage stack currently exists, and building one is con-

sidered difficult [21], let alone overcoming the many other

challenges of a complete storage stack. We design and imple-

ment Aeolia
1
to bridge the aforementioned gap (Figure 1).

We design Aeolia to achieve all the four essential prop-

erties for storage stacks: 1)High I/O Performance. Each
task directly accesses disks for low latency and high through-

put. 2) Coordinated Scheduling. Aeolia works in concert

with thread scheduling, enabling multiple tasks to share a

core efficiently. 3) Protected Sharing.Multiple untrusted

tasks share the disk without violating access permissions or

corrupting the storage stack. 4) High-Performance File
System. Aeolia includes a high-performance file system

with low access latency and excellent multicore scalability.

Our design of Aeolia overcomes what were previously

considered inherent challenges of userspace stacks.

First, to meet high I/O performance, Aeolia exploits user

interrupts, a new hardware feature supported since Sapphire

Rapids CPUs [13], to bypass the kernel to directly deliver

storage interrupts to userspace. Existing work [29, 46] lever-

ages user interrupts for task scheduling, via, e.g., userspace
IPIs. Aeolia advances by leveraging user interrupts for stor-

age devices. To achieve this, through a detailed analysis of

the hardware behavior, we identify a safe and novel approach

to deliver device interrupts to userspace.

Second, the inability to enforce protected sharing is often

considered an inherent disadvantage for userspace storage

stacks [34, 68, 71]. Prior approaches [23, 65] address this prob-

lem by introducing new hardware support. Instead, Aeolia

exploits standard hardware supports for intra-address space

isolation. With such support, Aeolia incorporates trusted

entities in the process address space. The trusted entities are

protected against untrusted userspace code to enforce access

permissions and prevent file system metadata corruption,

thereby achieving secure sharing.
Third, coordinatingwith thread scheduling is also challeng-

ing due to semantic gaps between the kernel and userspace.

However, this is necessary for Aeolia to 1 avoid kernel

scheduling overhead imposed on interrupts and 2 support

multiple threads efficiently sharing a CPU. Aeolia over-

comes this limitation by using sched_ext [7, 12], a recent

1
A floating island surrounded by a wall of unbreakable bronze in Odyssey.
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Figure 3. Overhead breakdown

of a 4KB read access.

Linux framework that allows userspace tasks to specify

an arbitrary thread scheduling policy with eBPF [3]. With

sched_ext, Aeolia bridges the semantic gaps by coordinat-

ing with the kernel thread scheduler over the eBPF map.

Finally, building upon the high I/O performance and pro-
tected sharing in Aeolia, we designed AeoFS, a fast POSIX-

like library file system. Aeolia enables direct data and meta-

data access with fine-grained parallelism to achieve low la-

tency, high throughput, and great multicore scalability. In

addition, to achieve metadata integrity, AeoFS leverages the

state separation design from Trio [73], a recent advancement

in library file systems. However, building upon Aeolia, Ae-

oFS advances Trio by introducing trusted entities into the li-

brary file system to perform eager metadata integrity checks.

Compared to the lazy integrity checks adopted in Trio, eager

checking is easy to reason about correctness while avoiding

data loss if the check fails. Furthermore, eager checking

incurs a negligible performance cost; each operation pays

an extra 85 cycles to switch to the trusted entity.

We implement Aeolia from scratch with 17751 lines of

code. Our evaluation shows that Aeolia performs similarly

to SPDK and AeoFS outperforms ext4, f2fs, and uFS by 2.87×
to 8.19× on LevelDB.

In summary, this paper makes the following contributions:

• Analysis. We reveal two new findings: 1) polling does

not significantly outperform interrupt, but rather 2)

limits file system performance.

• Aeolia. We design Aeolia, a userspace interrupt-

based storage stack, representing a new point in the

design space.

• AeoFS. We design AeoFS, a high-performance library

file system with great multicore scalability.

2 Analyzing Current Storage Stacks
This section analyzes the tradeoffs between interrupt and

polling, two fundamental approaches for I/O completion,

and a key dimension in the storage stack design space. We

examine two representative stacks: the Linux kernel and

SPDK [62]. We evaluated with a 128-core Intel machine

equipped with an Optane P5800X SSD [36] (detailed in §9).

To reach our insights, we partition the storage stack into

two layers: 1 the storage subsystem (e.g., BIO and the de-

vice driver in Linux) (§2.1) and 2 the file system (§2.2) and

examine each layer separately.

2.1 Storage Subsystem: Interrupt versus Polling
For the storage subsystem, we evaluate two cases: 1) a single

task running alone; and 2) multiple tasks running together.

I/O performance with a single task. With a single task,

the I/O performance of SPDK is known to surpass the kernel

stack significantly. Conventional wisdom [24, 27, 34, 57, 68,

71] attributes the gain to two factors: 1) using polling rather

than interrupts and 2) direct userspace access, bypassing

various kernel overhead such as layering and context switch.

We next analyze how much each of these two factors

contributes to the performance gains of SPDK. Our workload

is fio with 4KB read. We compare SPDK with io_uring [9],

the newest kernel stack interface. We configure io_uring

with two setups: 1) default (iou_dfl), which uses interrupts,

and 2) iou_poll, which uses polling.

Figure 2 shows the latency with different setups in the

kernel stack vs. SPDK. At first glance, polling brings signifi-

cant benefits (iou_poll: 5.4𝜇s vs. iou_dfl: 8.2𝜇s). However,

as shown in Figure 3, upon further analysis, we find that

most of the 2.8𝜇s interrupt overhead primarily stems from a

poor thread scheduling policy, which costs 1.8𝜇s. The inter-

rupt mechanism itself incurs only 0.6𝜇s overhead, while the

remaining 0.4𝜇s is due to different code execution paths. the

interrupt mechanism itself incurs only 0.6𝜇s overhead.

More specifically, the 1.8𝜇s scheduling overhead comes

from a pathological case in thread scheduling (Figure 4).

After issuing requests, the kernel eagerly puts the current

task (task A) into sleep and invokes the scheduler, hoping

to run the next task. However, since no other runnable task

exists, the kernel has to context switch to the idle task [8].

Therefore, upon I/O completion, the kernel must go through

a lengthy process of 1 converting the sleeping task A to

runnable (0.7𝜇s); 2 updating scheduling statistics before

leaving the idle task (0.4𝜇s); and finally, 3 scheduling and

context switching back to task A (0.7𝜇s). When an I/O op-

eration costs milliseconds, eagerly putting task A to sleep

before even identifying the next task to run does not cause

an issue, but this is no longer suitable for modern SSDs.

To avoid the high scheduling overhead, we introduce an

active checking policy. Rather than blindly putting a task

that issues a storage request into a sleep, our policy keeps

the task awake when no runnable task exists. With this

policy, the optimized interrupt (iou_opt) performs similarly

to polling (6.3𝜇s vs 5.4𝜇s)2, even with 4KB access size.

With the active checking policy, most performance

gains of SPDK actually come from kernel bypassing (SPDK:

4.2𝜇s vs. iou_poll: 5.4𝜇s). The performance difference be-

tween our userspace interrupt-based AeoDriver (4.8𝜇s) and

SPDK (4.2𝜇s) further validates the above claim.

Performance with multiple tasks. Figure 5 shows the

results of running on a single core: a) one I/O-intensive and

2
Interrupt accounts for 0.6𝜇s overhead and the remaining 0.3𝜇s is due to

kernel scheduling bottom-half operations.
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Figure 5. Performance when multiple tasks share a core. The I/O

intensive tasks repeatedly issue 128KB reads, and the compute-

intensive task is swaptions in PARSEC.

one compute-intensive task and b) two I/O-intensive tasks.

In the former case, polling significantly reduces the work

performed by both types of tasks (see SPDK and iou_poll).

In the latter case, polling incurs a high tail latency. These

results conform to existing findings [34, 68, 71].

Polling suffers because of an inherent disadvantage: the

system does not know when the I/O finishes and thus cannot

coordinate thread scheduling with the storage stack. For

example, the high tail latency is because the scheduler cannot

promptly run the corresponding task when its I/O completes.

Finding #1: Polling offers marginal storage perfor-
mance gains over interrupts but is inherently chal-
lenging for coordinating with thread scheduling.
2.2 How Polling Limits File System Performance
Our analysis at the file system layer is motivated by the two

general performance limitations of existing file systems: 1)

high software overhead and 2) poor multicore scalability. The

cause of such performance limitations for kernel file systems

is known. The kernel stack aims to be general and, thus,

incurs various layering overhead (e.g., syscall [74], JBD [39])

to its file systems. It also incurs poor scalability due to the

challenge of designing a scalable yet general VFS [25, 51].

Our key finding is that file systems on polling-based stor-

age subsystems also inherently suffer from these limitations.

Take uFS [48] built upon SPDK as an example (Figure 1). uFS

is a standalone process with a small number of dedicated

worker threads to handle file system operations. Dedicated

worker threads are necessary to minimize CPU overhead

caused by polling
3
. However, this design requires applica-

tions to communicate with uFS using costly IPC (at least

hundreds of nanoseconds), incurring high overhead.

Furthermore, polling poses great challenges in multicore

scalability for a file system. To make the CPU overhead ac-

ceptable, polling often comes with an event-driven program-

ming model, which greatly complicates concurrency control

when multiple asynchronous event handlers need to coordi-

nate access to shared filesystem states. To simplify this, uFS

3
While designs such as BlobFS [18] forgo dedicated worker threads by hav-

ing each application thread poll, we believe that such a design is challenging

to adopt in many scenarios due to excessive CPU usage.

Polling Interrupt

I/O Performance ✓ × →✓
Coordinated Sched. × ✓
FS Performance × ✓

Kernel Userspace

I/O Performance × ✓
Coordinated Sched. ✓ × →✓
Protected Sharing ✓ × →✓

Table 2. Tradeoffs in the two design dimensions of storage stacks.

→ represents the conventional wisdom that Aeolia challanges.

Stack
File

System Driver
User

Interaction
Execution
Context Notification

Linux Kernel FS Kernel driver Syscalls Kernel Interrupt

uFS uFS SPDK IPC Userspace Polling

Aeolia AeoFS AeoDriver Library calls Userspace Interrupt

Table 3. Comparison of representative storage stacks.

assigns all operations on a specific file to a single thread and

all metadata operations to a global master thread. Exclusive

assignment avoids complex locking within asynchronous

events [19], but at the cost of limiting scalability since multi-

ple threads cannot concurrently operate on the same file.

Finding #2: Polling limits file system performance.

3 An Overview of the Aeolia Storage Stack
This section presents Aeolia’s design goals (§3.1), explains

the design choices we made (§3.2) followed by an overview

of Aeolia (§3.3), and finally discusses its limitations (§3.4).

3.1 Design Goals
We design Aeolia to meet the following goals.

• High I/O Performance. Aeolia must minimize soft-

ware overhead in both the storage subsystem and the

file system, achieving high performance on both single-

core and multi-core setups.

• Coordinated Scheduling. Aeolia should coordinate

thread scheduling to make multiple I/O- and compute-

intensive tasks run efficiently on the same core.

• Protected Sharing. Aeolia should allow untrusted

tasks to share the storage stack and the underlying

disk device.

• File System Support. Aeolia should enable high-

performance file systems with low access latency and

excellent multicore scalability.

3.2 Aeolia’s Unique Point in the Design Space
To meet design goals, we design Aeolia as an interrupt-

based userspace storage stack, a new and unique point in

the design space.

We make this design choice based on the tradeoffs summa-

rized in Table 2. In the I/O notification dimension, we choose

interrupt over polling due to its advantages (§2). In the exe-

cution context dimension, we choose userspace over kernel

since the former enables a clean-slate design and avoids the

“generic tax” inherent in kernel stacks. Recent work also re-

ports other userspace benefits such as customization [54, 73]

and high development velocity [32, 49]. Table 3 summarizes

the key differences between Linux, uFS, and Aeolia.

We next discuss how Aeolia overcomes the two previ-

ously inherent disadvantages of a userspace stack: protected

sharing and coordinated scheduling.
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3.3 An Overview of Aeolia Design
Components. Figure 6 shows Aeolia’s components: AeoK-

ern, AeoDriver, and AeoFS. AeoKern is the typical ker-

nel module in userspace I/O stack design [40, 65], responsi-

ble for, e.g., configuring hardware, allocating resources (e.g.,
disk queue pairs), and maintaining access permissions. Aeo-

Driver is a library device driver, directly interacting with the

disk and offering high-level interfaces that abstract the disk.

AeoFS is a library file system building upon AeoDriver,

offering POSIX interfaces to allow existing applications to

benefit from Aeolia without modification.

Target use cases. Aeolia targets general-purpose OS use

and is designed to replace both traditional kernel-based stor-

age stacks and userspace polling-based storage stacks (e.g.,

SPDK). Aeolia supports legacy applications, since it includes

AeoFS that offers conventional POSIX interfaces. Thanks to

AeoDriver, similar to SPDK, Aeolia can also be adapted to

specialized storage stacks, such as those used by databases.

Direct userspace access with user interrupts. Aeo-

Driver achieves complete userspace I/O by directly han-

dling both I/O submissions and completions without kernel

involvement. In the submission path, the AeoKern allocates

NVMe queue pairs to an AeoDriver instance and maps the

queue pairs into the process address space, enabling Aeo-

Driver to send requests to the disk directly. In the comple-

tion path, as further explained in §4.2, AeoDriver leverages

user interrupts to deliver and handle storage interrupts in

the userspace, bypassing the kernel.

Protected sharing with intra-process isolation. Follow-
ing the conventional threat model, Aeolia assumes that

userspace applications are untrusted. This threat model

means the storage stack must prevent applications from 1) ac-

cessing state without proper permissions; and 2) corrupting

any shared state, especially file system metadata. Meeting

these goals for a userspace stack is challenging. Prior work

either proposes new hardware support [23, 38, 56, 65, 70] or

prevents direct access by making the storage stack a privi-

leged process, such as uFS.

Aeolia meets the aforementioned goals by leveraging

standard hardware features to create trusted entities within

process address spaces (§5). The trusted entities execute

predefined code to prevent corruption from applications.

Specifically, AeoDriver is a trusted entity enforcing access

permissions to each disk block. Part of the AeoFS is also a

trusted entity, ensuring that a process cannot corrupt shared

metadata. To ensure integrity, the state of trusted entities re-

sides in a dedicated memory region that applications cannot

access. Entering a trusted entity only requires 40ns, much

faster than kernel trapping or IPC.

Coordinated scheduling. Aeolia coordinates with thread

scheduling to enable multiple tasks sharing a single core. To

meet this goal, mechanism-wise, Aeolia adds to its trusted

entities scheduling decision points (e.g., before returning

from the interrupt handler) to check if the current thread

should yield the core. Aeolia’s scheduling decision points

are the same as the ones in the Linux kernel. Policy-wise,

following the spirit of the active checking policy (§2.1), Aeo-

lia only yields when necessary, where the next task should

run based on the scheduling policy. To achieve this, Aeolia

must be aware of the current thread scheduling algorithm

and access the relevant scheduling state. However, neither

of these is available to userspace entities.

To overcome this challenge, Aeolia uses the extensible

scheduler class(sched_ext [12]), a very recent eBPF-based

scheduling framework. Aeolia uses sched_ext to define the

kernel scheduling algorithm and expose it to userspace, so

that Aeolia is aware of the current scheduling policy. Specifi-

cally, as sched_ext uses eBPFmaps to store all the scheduling

state, Aeolia simply mmap the eBPF to expose such state to

the trusted entities of Aeolia. Thanks to sched_ext, Aeolia

is able to yield the core only when necessary.

Enabling an efficient file system. The design presented

above enables secure userspace access to the storage device,

thereby eliminating various performance bottlenecks (§2.2),

such as kernel trapping, IPC, and VFS.

Enabled by such design, as detailed in §7, AeoFS directly

performs all file system operations, including both data and

metadata operations, in the userspace, thereby achieving

great performance. Furthermore, AeoFS inherits the state

separation insights from Trio [73], a recent advancement in

userspace file systems, to achieve metadata integrity. Specif-

ically, enabled by the ability to add trusted entities in the

same address space, AeoFS introduces a file system trust

layer to enforce metadata integrity eagerly.

Putting it together. We next explain how Aeolia’s compo-

nents work together. We refer the readers to Figure 6 again

for an overview of Aeolia components. When an applica-

tion issues a filesystem syscall, the thread enters AeoFS. For

syscalls that involve modifying metadata, the trusted layer of

AeoFS ensures that such modifications do not violate meta-

data integrity. Next, AeoFS translates the filesystem-level

operation into a block-level request and sends the request

to AeoDriver. AeoDriver, being a trusted entity, checks if

the application has the right permission to access the target

blocks. If so, AeoDriver sends the request to the disk.

After issuing the I/O request, AeoDriver checks if the

current thread should yield the core by reading the sched-

uling state in the eBPF maps of sched_ext. If so, the thread

enters the kernel to yield the core.
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Upon request completion, AeoDriver is notified via user

interrupts. Before returning from the interrupt handler, Aeo-

Driver checks again if the current thread should yield the

core. Eventually, AeoDriver returns to AeoFS, and AeoFS

returns the syscall results to the application.

3.4 Limitations
One limitation is that interrupts are still slower than polling

when the I/O size is small (18.2% with 512B evaluated in §9.2).

We believe that this limitation is temporary since recent work

has made interrupts almost as fast as polling [21]. In addition,

such small storage requests are rare in practice. For example,

in the Alibaba block trace [1], over 95% of requests exceed

4KB. Another limitation is that Aeolia depends on certain

hardware features. However, the design of Aeolia is gener-

ally applicable to mainstream ISAs. RISC-V also introduces

support for user interrupts [15]. Intra-process isolation is a

common feature, supported on ARM [2] and under active

exploration on RISC-V [26, 60]. Finally, AeoFS suffers from

extra overhead when multiple applications concurrently up-

date the same file or directory, as detailed in §9.4. This is a

general limitation of userspace library file systems [73].

4 AeoDriver Design
This section presents the design of AeoDriver by present-

ing 1) the relevant background for user interrupts (§4.1),

2) how to directly deliver storage interrupts to AeoDriver

via user interrupts (§4.2), and 3) AeoDriver’s data struc-

tures, exposed interfaces, and the workflow to process an

I/O request (§4.3).

4.1 User Interrupts
User interrupt [16, 17] is a hardware feature that directly

delivers interrupts to userspace processes, supported since

Intel Sapphire Rapids CPUs. The conventional use case is to

allow a process to bypass the kernel to send IPIs to another

process, thereby minimizing the associated overhead. A re-

cent patch from Intel added support for user interrupts to the

Linux kernel [20]. Delivering and handling user interrupts is

as fast as a regular interrupt, costing 0.6𝜇s on our machine.

Key hardware state. Figure 7 shows the key hardware

state for user interrupts. Each core is associated with five

model-specific registers: 1) UINV, which stores the interrupt

vector that should be delivered to userspace, 2) UIHANDLER,

which stores the address of the handler for user interrupts, 3)

UIRR, a bitmap where each set bit represents a pending inter-

rupt, 4) UPIDADDR and 5) UITTADDR, which store the memory

address of UPID (user posted interrupt descriptor) and UITT

(user interrupt target table), respectively. Two key fields in

UPID are PIR (posted-interrupt requests), a bitmap where

each set bit represents a posted interrupt, and destCPU, the

destination CPU ID of user IPIs.

User IPIs. A key data structure for user IPIs is UITT (Fig-

ure 7), which stores an array of entries, where each entry

stores 1) addrUPID: the address of the target UPID and 2) UV:

UIHANDLER

UPIDADDR
PIR

UITT

R
eg
is
te
r M

em
oryUITTADDR

UINVUIRR UPID
destCPU

UV addrUPID

Figure 7. Key hardware components of the user interrupt.

the user interrupt vector of the IPI. Sending user IPIs re-

quires a new instruction SENDUIPI, which takes as its input

operand an index of UITT. To execute SENDUIPI, the hard-

ware first finds the corresponding entry given the specified

index. The hardware then finds the target UPID based on

addrUPID, modifies the PIR field based on UV to post an in-

terrupt, and delivers the interrupts to the target core based

on the destCPU field.

User interrupt delivery. The hardware delivers a user

interrupt in two phases: identification (steps 1 and 2 below)

and signaling (steps 3 and 4 ).

1 Once a core receives an interrupt, it first checks if the

interrupt vector matches the one in UINV. If not, this interrupt

is handled as a regular interrupt. 2 Otherwise, the hardware

moves the PIR field in UPID to UIRR, raising a pending user

interrupt, and clears the PIR field. 3 Next, the core checks

if it is in userspace (ring 3). 4 If so, the core executes the

interrupt handler whose address is stored in UIHANDLER.

Protection. Hardware only allows privileged software to

access the relevant MSRs using WRMSR and RDMSR instructions.

Furthermore, the OS must correctly set the page table to

prevent userspace processes from modifying UPID and UITT,

since otherwise, malicious processes may flood other cores

with user IPIs (by, e.g., modifying the destCPU field in UPID).

4.2 Enabling Userspace Storage Interrupts
A critical challenge Aeolia encounters is that the current

user interrupt feature is not designed for disks. Follow-

ing §4.1, to deliver disk interrupts as user interrupts, the

software must ensure (1) the UINV register matches the disk

interrupt vectors to trigger step 1 and (2) the PIR field in

the UPID region is filled to trigger step 2 . Meeting the first

requirement is simple: the kernel can configure UINV upon

AeoDriver initialization and maintain it across thread con-

text switches. However, meeting the second requirement is

challenging. The hardware clears the PIR field in step 2 , and

thus the userspace interrupt handler must rewrite the PIR

field in UPID. However, UPID (or in general all user interrupts

hardware state) is designed for kernel access only (§4.1),

and thus cannot be modified by the userspace handler. One

possible way is to trap into the kernel to rewrite UPID, but

this loses much of the performance benefit of kernel bypass-

ing. Indeed, a key reason why a new instruction SENDUIPI

is needed is that SENDUIPI performs the checks and sets the

PIR field to enable userspace IPIs.

AeoDriver overcomes this challenge by leveraging the

fact that UPID is a memory region instead of an MSR. There-

fore, upon AeoDriver initialization, the kernel maps the
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UPID into the address space of AeoDriver, allowing the in-

terrupt handler to write the UPID directly. This design does

not create any security issues since 1) UPID resides in the

memory region of the trusted AeoDriver, and 2) AeoDriver

is a trusted entity.

Coexisting with other types of userspace interrupts.
We next propose a technique that enables AeoDriver to co-

exist with UIPIs or other userspace device interrupts. With

our technique, other userspace device interrupts function

well. However, as detailed below, UIPIs may generate a spu-

rious interrupt, and this is a limitation of Aeolia.

Specifically, Aeolia configures these interrupt sources

to share the same interrupt vector as the disk. In addition,

for device interrupts, Aeolia programs the PIR in the same

manner as for the disk. For UIPIs, no special handling of the

PIR is required since the SENDUIPI instruction automatically

sets the PIR. With the above setup, both device interrupts

and UIPIs are delivered to the user interrupt handler.

Due to interrupt vector sharing, the interrupt handler

needs to identify the source of an interrupt (i.e., whether

it comes from the disk, a UIPI, or other devices). To do so,

for I/O devices, the handler checks the hardware comple-

tion queues for new entries. For UIPIs, the bit position in

the PIR set by SENDUIPI is stored on the stack of the inter-

rupt handler; therefore, the handler can simply check the

corresponding location on the stack to identify the source.

The above technique works well for devices. For UIPIs,

since 1) SENDUIPI sets another bit in PIR and 2) the hardware

triggers the same number of user interrupts as the number

of bits set in PIR, our technique causes a spurious interrupt.

4.3 AeoDriver Data Structures and Interfaces
The rest of the AeoDriver design is similar to a high-

performance userspace storage subsystem, e.g., SPDK, except
that it enforces access permissions for protected sharing

using a permission table, as detailed next.

The permission table. The permission table is an in-

memory bitmap recording, for each block, the read and write

access permissions for the current process. The permission

table supports conventional abstractions such as disk par-

titions and is initialized by obtaining relevant information

from AeoKern. Other trusted entities can modify the per-

mission table using the provided APIs, as we detail next.

Interfaces. Table 4 shows the interfaces AeoDriver ex-

poses to the upper-level storage stack. Most APIs are straight-

forward and AeoDriver checks for the access permission

based on the permission table upon read/write_blk. A spe-

cial case is that AeoDriver exposes interfaces to trusted enti-

ties to 1) access or modify blocks bypassing permissions with

read/write_blk_priv and 2) access or change the block ac-

cess permissions for the current process with get/set_perm.

The code entry routine rejects untrusted code to invoke these

APIs, while the trusted entities can directly invoke these APIs

since they are in the same protection domain.

Group API Description

Device

1 open_device(args, dev) Initiate disk data structures.

2 close_device(args, dev) Free disk data structures.

Queue Pair

3 create_qp(args, dev, qp) Require a qpair form AeoKern.

4 delete_qp(args, dev, qp) Release a qpair to AeoKern.

DMA Buffer

5 alloc_dma_buf(dev, buf, size) Allocate data buffers for DMA.

6 free_dma_buf(dev, buf) Free DMA data buffers.

I/O Operations

7 read_blk(qp, lba, cnt, buf) Read blocks from the device.

8 write_blk(qp, lba, cnt, buf) Write blocks to the device.

Privileged I/O

9 read_priv(qp, lba, cnt, buf) Read blocks with privilege.

10 write_priv(qp, lba, cnt, buf) Write blocks with privilege.

Permission

11 get_perm(blk, perm) Get block access permissions.

12 set_perm(blk, perm) Set block access permissions.

Table 4. APIs provided by AeoDriver.

5 Protecting Trusted Entities with MPK
This section discusses how Aeolia creates trusted entities

in the address spaces of untrusted processes using MPK.

Background onMPK. Memory protection keys (MPK) [13],

supported since Intel Skylake processors [14], enable mem-

ory isolation within the same address space. Each page table

entry is tagged with a 4-bit to denote up to 16 protection

domains. A 32-bit per-core register PKRU controls the access

permissions to these protection domains, with each bit de-

noting a read/write permission to the corresponding domain.

Memory access is only permitted when both the page table

permissions and the PKRU register allow such access.

A key advantage of MPK is that the page access permis-

sions can be entirely changed in userspace, avoiding the

costly mprotect() system call. Specifically, userspace pro-

cesses can modify the PKRU register with a special instruction

WRPKRU, which only costs around 48 cycles on our machine.

Protecting trusted entities with MPK. To prevent the

trusted entities from being compromised, Aeolia maintains

all memory state of the trusted entities within a dedicated

MPK protection domain. Therefore, ensuring the integrity

of the trusted entities boils down to enforcing the following

two invariants: 1 Upon launching an Aeolia application, the

trusted entities are correctly set up (i.e., the intended trusted
entities are loaded and mapped to the dedicated protection

domain), and 2 During runtime, only trusted entities can

modify the PKRU register.

I1: Correctly setting up the trusted entities . To enforce

this invariant, Aeolia uses code signatures and a privileged

launching process. Before launching, a trusted user regis-

ters with the kernel the signatures of trusted entities. Upon

launching, the privileged launching process verifies that the

linked trusted entities match the registered signatures. If

so, the launching process mmaps the memory regions of

the trusted entities into the dedicated protected domain. Fi-

nally, the launching process executes the initialization code

of the trusted entities, drops the root privilege, and transfers

control to the application’s main function.

I2: Only trusted entities can modify the PKRU register.
Aeolia enforces this invariant as follows. First, upon launch-

ing, the privileged launching process inspects the binary of

485



the untrusted code to verify that it does not contain WRPKRU

instruction. Next, during runtime, Aeolia prevents the un-

trusted code from inserting WRPKRU via self-modifying code.

Specifically, AeoKern intercepts memory-management sys-

tem calls (e.g., mmap and mprotect) and returns an error if

the call makes a page both writable and executable.

Invoking the interfaces exposed by trusted entities. Ae-
olia enables the untrusted code to invoke trusted entities’

interfaces by including a dedicated entry routine as part of

the trusted entities. The entry routine executes WRPKRU to

grant access to the dedicated protected domain of the trusted

entities, switches the stack to the one used by the trusted en-

tities, and sets up arguments according to the calling conven-

tion. Returning from the trusted entity uses another routine

that performs the reversed steps.

We note that the MPK-related techniques in this section

directly follow prior work [63]. Our contribution lies in ap-

plying the techniques to userspace storage stacks, achieving

protection on commodity hardware, whereas related work

proposes new hardware support, as discussed in §3.3.

6 Coordinated Scheduling in Aeolia
This section presents the mechanism (§6.1) and policy (§6.2)

that enable coordinated thread scheduling for Aeolia. Our

current design aims to demonstrate that thread scheduling

is not an inherent disadvantage of userspace storage stacks

and, thus, closely mimics the kernel stack.

6.1 Scheduling Mechanism
As discussed in §3.3, Aeolia adds scheduling decision points

to its trusted entities to yield the core. Linux decides these

scheduling decision points in two steps. First, upon events

such as I/O interrupts that wake up a thread, the kernel sets

a reschedule flag in the currently running thread. Second,

when the thread returns from an interrupt or to userspace,

the kernel checks the flag and, if set, invokes the scheduler.

To match the first step, Aeolia carefully handles out-of-

schedule user interrupts, as we detail next; for the second,

Aeolia invokes the scheduler after issuing an I/O request

and upon returning from the interrupt handler in AeoDriver

or the trusted layer in AeoFS (§7.3).

Out-of-schedule user interrupts. An interesting issue

arises with handling out-of-schedule user interrupts, i.e., an
interrupt delivered when the user thread is currently not

running. The Intel kernel patch [20] handles those by mask-

ing such interrupts in the kernel, and thus, the interrupts are

only delivered when the target thread resumes execution.

However, this approach forgoes a key benefit of interrupts;

the thread scheduler does not receive immediate notification

when a thread is woken up and no longer blocked by I/O.

Hence, this approach renders Aeolia susceptible to the same

high tail latency problem as SPDK (§2.1).

Instead, Aeolia handles out-of-schedule interrupts by

delivering them into the kernel, and thus correctly sets up the

1 # Called at Aeolia scheduling points
2 # @sched_info: Read-only scheduling state exposed by BPF maps.
3 def user_try_yield(sched_info):
4 if sched_info.nr_running > 1: # There are other tasks
5 curr_info = sched_info.current # Read current state
6 cand_info = sched_info.candidate
7 exec_time = now() - curr_info.exec_start
8 # Simulate scheduling state update based on execution
9 # time and scheduling policy
10 # (e.g., vruntime and deadline for EEVDF)
11 mock_update_curr(curr_info, cand_info, exec_time)
12 # Simulate scheduling policy
13 if need_resched(curr_info, cand_info):
14 sched_yield() # Voluntarily yield the CPU

Figure 8. Pseudocode of Aeolia’s yield.

reschedule flag. Aeolia achieves this by assigning different

user interrupt vectors for different threads (§4.2), so that the

interrupt vector of an out-of-schedule interrupt will always

mismatch the current UINV register, thus delivered to the

kernel as a regular interrupt ( 1 in §4.1).

This approach introduces another interesting issue. Since

the storage stack is in userspace, the kernel interrupt handler

cannot handle I/O, and thus, Aeolia must still invoke the

userspace interrupt handler. Setting hardware in the kernel

to redeliver the user interrupt incurs another interrupt over-

head of 0.6𝜇s. Instead, Aeolia changes the saved register and

stack context of the target thread to insert a stack frame for

the userspace interrupt handler. Therefore, upon returning

from the kernel, the target thread first executes the userspace

interrupt handler and returns to the point where it traps.

6.2 Scheduling Policy
As discussed in §3.3, to enable Aeolia to yield only neces-

sary, Aeolia leverages sched_ext. The sched_ext is a very

recent feature supported since the release of Linux 6.12 in

November 2024. sched_ext enables users to define custom

kernel thread scheduling policies by exposing a set of hook-

point functions, each triggered by a specific scheduling event.

sched_ext is implemented using eBPF [3], which allows safe

and efficient injection of a custom scheduling policy into the

kernel without modifying the kernel scheduler code.

With sched_ext, Aeolia uses as its scheduling policy the

Earliest Eligible Virtual Deadline First (EEVDF) policy in the

latest Linux kernel. Aeolia maintains the same scheduler

state as EEVDF in eBPF maps (e.g., run queue, virtual runtime,

number of runnable threads, deadline) and implements the

same scheduling policy at each scheduling hook function as

EEVDF. Next, Aeolia exposes the scheduling state in eBPF

maps to its trusted entities.

Enabled by the above, as shown in Figure 8, Aeolia yields

the core only when necessary. At each scheduling design

point, the function inspects the scheduling state exposed by

the kernel (lines 4-7, e.g., the number of runnable tasks and

the candidate task’s priority or deadline). If multiple tasks

are runnable and the policy demands a rescheduling (lines

11-13), it calls sched_yield() to enter the kernel for the actual

task switch (line 14). Otherwise, it continues execution in

user space, minimizing unnecessary kernel crossings.
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7 AeoFS Design
This section presents AeoFS, a highly scalable POSIX-like

library file system building on top of AeoDriver. AeoFS bor-

rows the key insight of state separation from Trio (§7.1) but

comes with a different design to better suit modern NVMe

disks (§7.2). AeoFS further introduces eager integrity check-

ing (§7.3) and ensures crash consistency via journaling (§7.4).

7.1 The Trio Architecture and Its Limitations
AeoFS builds on top of the key insight from Trio [73], a

library file system (LibFS) architecture originally designed

for non-volatile main memory (NVMM). The key insight is

that the file system state can be separated into core state and

auxiliary state. The core state contains critical metadata that

must never be lost (e.g., access permissions) and is stored in a

simple, fixed layout shared by all LibFS instances to enforce

integrity. The auxiliary state (e.g., caches, file descriptors) is

private to each LibFS instance, can be freely customized, and

can be rebuilt from the core state.

Leveraging this key insight, Trio employs a trusted veri-

fier to lazily maintain metadata integrity. Specifically, Trio

enables each LibFS to modify metadata directly. A privileged

trusted verifier is invoked to check for metadata corruption

when a LibFS releases a file to the kernel. If the check fails,

Trio rolls back the file state to a previous checkpoint con-

ducted when a LibFS acquires the file.

However, directly adopting Trio for AeoFS onNVMe SSDs

presents two challenges. First, Trio’s state organization is

tailored for NVMM and assumes MMU-based access con-

trol, making it ill-suited for block devices that require dif-

ferent protection mechanisms. Second, the lazy verification

approach postpones metadata integrity validation. This re-

quires a careful design of the verifier to ensure correctness.

Furthermore, if the verification fails, all updates since the

previous checkpoint are lost.

7.2 Scalable Data Structures for NVMe
Core state. Figure 9 shows the on-disk core state of AeoFS,

consisting of a superblock, inode/block usage bitmaps, an

inode table, data blocks, and dedicated journaling regions,

similar to ext4. A file consists of index blocks and data blocks.

Each entry of an index block points to a data block, with the

last entry pointing to the next index block. The file records

the first index block in its inode. A directory stores directory

entries in its data blocks; each entry contains the file’s inode

number, the file name, name length, and the entry size.

Scalable auxiliary state. The in-memory auxiliary state

contains all state related to file descriptors and three caches:

page cache, directory entry cache, and inode cache. AeoFS

maintains a per-core file descriptor allocator to maximize

performance. Each regular file consists of a page cache where

AeoFS uses a radix tree to map file offset to a cached data

page. The page cache is protected with a readers-writer range

lock, allowing concurrent reads on the same pages and con-

current writes to disjoint pages. For each directory, AeoFS

uses a resizable chained concurrent hash table to map a

file name to the cached directory entry. Each bucket in the

hash table is associated with a readers-writer lock, allowing

concurrent reads from the directory while minimizing con-

tention for file inserts/deletes. Finally, AeoFS caches inode

state in memory, where each inode entry is protected with a

dedicated readers-writer lock.

Discussion. Our state design targets block devices, differing
from Trio, which targets NVMM, in the following way. Since

NVMM relies on MMU to enforce access permissions, to

support direct userspace handling of stat and create, Trio

colocates the inode of a file with its directory entry. This

design complicates supporting certain file system features (“.”,

“..”, hard links). As detailed in the next subsection, our design

uses software trusted entities to enforce access permissions,

thus avoiding these issues.

7.3 Ensuring File System Integrity
Eager integrity checking. AeoFS performs eager metadata

integrity checks rather than the lazy style adopted in Trio

and Recon [30], thereby overcoming the aforementioned lim-

itations (§7.1). This is enabled by Aeolia’s technique (§5) to

introduce trusted entities. Specifically, AeoFS consists of a

trusted layer, which maintains core state and is protected

from the untrusted code. The rest of AeoFS forms an un-

trusted layer, which maintains auxiliary state. The untrusted

layer accesses the core state only through the well-defined

interfaces exposed by the trusted layer (Table 5).

Upon each interface invocation, the trusted layer performs

the same set of validations as a kernel file system to ensure

the operation does not violate metadata integrity. Some crit-

ical checks include: (1) for all operations, verifying that the

caller has the right permission (2) for update_inode, checks

that the field is valid (e.g., the file type must be either a di-

rectory or a regular file) (3) for create_in_dir, checks that

the new directory entry is valid (e.g., the new entry does

not share the same name as another entry under the same

directory) (4) for remove_dir and rename, checks that the di-

rectory hierarchy remains a connected tree without dangling

files or forming a cycle.

With this design, AeoFS provides the same metadata con-

sistency guarantees as a kernel file system: a malicious pro-

cess may corrupt only its private auxiliary state, but not the

shared core state, and thus cannot affect other processes.
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Group API Description

Inode State

1 query_inode(inode) Read an inode information.

2 query_index_page(inode) Read a index page of a file.

3 query_dentry_page(inode) Read a dentry page of a directory.

4 update_inode(inode, field, value) Update a field of an inode.

5 sync(void) Write all core state to disk.

File Operations

6 truncate_file(file, length) Decrease file length.

7 append_file(file, length) Increase file length.

Dir Operations

8 create_in_dir(dir, inode) Create a file/dir in a directory.

9 remove_in_dir(dir, inode) remove a file/dir in a directory.

10 rename(o_dir, o_inode, n_dir) rename a file/dir.

Table 5. APIs provided by the file system trusted layer.

AeoFS performs eager checking for the following reasons.

First, unlike lazy checking, eager checking is easier to reason

about correctness and avoids progress loss. Second, due to

in-memory caching, handling fsync in an SSD file system is

more convoluted than in an NVMMfile system, which almost

forgoes caching [28, 64, 72, 73]. Adding the complicated

integrity checks exacerbates the already error-prone and

lengthy handling of fsync [30]. The tradeoff is that, during

normal operation, eager checking may require a domain

switch to the trusted entity (§5), but this only incurs a small

85-cycle overhead.

Handling file system operations. Upon initialization, the

trusted layer sets the permission table in AeoDriver (§4.2)

to prevent the untrusted layer from accessing any block in

the file system. During normal operations, the untrusted

layer handles file system operations with its cached state. It

invokes the trusted layer upon 1) cache misses to read core

state or 2) operations involving modifying core state (e.g.,
creating a file).

The trusted layer maintains its own inode and directory

entry cache. For each access, it checks 1) the access per-

missions with the inode cache, and 2) metadata integrity

violation (e.g., introduces a loop in the directory tree) with

both caches. If the check passes, for read accesses, the trusted

layer invokes AeoDriver to handle them; for write requests,

the trusted layer prepares in-memory journal entries.

7.4 Crash Consistency
Crash consistencymode. AeoFS follows the orderedmode,

the default option in ext4. Only metadata is journaled, and

the relevant file data persists on the disk before metadata

journaling. AeoFS follows ext4 on fsync semantics [10, 61]

by persisting both the specified file and all in-memory jour-

nals. This aligns with the goal of simplifying handling fsync

behind eager integrity checking.We test AeoFS’ crash consis-

tency with unit tests during development but do not evaluate

it with testing frameworks such as CrashMonkey [52].

Crash consistency mechanism. AeoFS uses the standard

block-level physical redo journaling. Only the trusted layer

handles journaling, preparing in-memory journal entries

upon requests to modify core state. The trusted layer reuses

locks in its caches to serialize concurrent writes to the same

file. A start and a commit block are added to journal trans-

actions bigger than the block size. To maximize scalability,

AeoFS employs per-thread journaling, where each transac-

tion is timestamped by rdtsc.

Upon fsync, the untrusted layer persists all the dirty pages

in its cache and enters the trusted layer to commit the jour-

nal. A critical challenge in prior per-core journaling de-

sign [22, 41] is to correctly handle journals writing to the

same block from different cores. Since fsync flushes all in-

memory journals, AeoFS resolves this issue by locking every

per-thread journaling region, merging transactions writing

to the same block on their timestamp, and then committing

them. Upon a crash, the committed journal is replayed.

8 Implementation
We implement Aeolia in the Linux 6.12.20 kernel. The AeoK-

ern, AeoDriver, and AeoFS have 3992, 1889, and 11870

lines of code, respectively. Our implementation fulfills all

the presented design, except for the I1 part in §5; we have

not implemented the code for signature registration and

the privileged launching process. Rather, we directly map

the memory state of the trusted entities to the dedicated

protection domain. We believe that there are no inherent

challenges to the implementation, but rather that it requires

more engineering efforts.

Validating Aeolia Protection. To validate the protection,
we simulate malicious and buggy applications by handcraft-

ing 96 attacks , which stress all Aeolia’s trusted entities:

AeoKern, AeoDriver, and the trust layer of AeoFS. In all

test cases, Aeolia successfully defends from the attacks.

These attacks are conducted by the untrusted part of the

process, with the goal of bypassing the protection in the

trusted layer. Specifically, the untrusted code performs two

categories of attacks: (i) Access violations, such as directly

modifying queue pair or user interrupt data structures (e.g.,
UPID); (ii) File system corruptions, such as creating files

with illegal names (e.g., containing “/”) or forming cyclic or

disconnected directory structures.

9 Evaluation
9.1 Evaluation Setup
Environment. Our experiment machine has four NUMA

nodes equipped with 128-core Xeon Platinum 8592 proces-

sors and an Intel Optane SSD P5800X SSD [36]. We note that

Aeolia supports all NVMe SSDs and does not rely on any

Optane-specific features. Rather, we choose Optane since it

represents the worst case for Aeolia: its low access latency

maximizes the impact of Aeolia’s interrupt overhead. The

system runs Ubuntu 22.04 and Linux kernel 6.12.20. We dis-

able hyperthreading, turbo boost, and power saving mode

to obtain stable results.

Baseline. We compare AeoDriver with SPDK [62] and two

variances of the Linux kernel stack: POSIX (the default POSIX

interfaces), and io_uring [9]. We tune the performance of

the kernel stack by enhancing it with blk-switch [34] and

disabling KPTI. We compare AeoFS with uFS [48], ext4 [4],
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Figure 10. Single thread performance of storage subsystems.

and f2fs [44]. uFS is a research file system, while the other

two are mature kernel file systems. All evaluated systems

use the default configuration.

Workload. We use fio [6] to stress both the storage sub-

system and the file system by simulating both throughput-

bound and latency-critical I/O tasks. We use FxMark [51]

to evaluate the multicore scalability of the file systems. We

use as file system macrobenchmarks Webserver, Fileserver,

Webproxy, and Varmail in Filebench [5] and LevelDB [11].

9.2 AeoDriver Performance
Single-thread performance. Figure 10 shows the single-
thread performance of AeoDriver with increasing I/O sizes.

With small access sizes, AeoDriver significantly outper-

forms the conventional interrupt-based kernel storage stacks.

Specifically, with the 512B size, compared to POSIX, Aeo-

Driver achieves 2× higher throughput, 48% lower median

latency and 26% lower tail latency. With a larger size of 8KB,

AeoDriver achieves 1.54× higher throughput, 36% lower

median latency, and 21% lower tail latency.

AeoDriver delivers similar performance to SPDK across

most I/O sizes, except for small requests below 4KB. In the

worst case, with 512B read, AeoDriver incurs 10.7% lower

throughput, 18.2% higher median latency, and 6.1% higher

tail latency. This is because the interrupt overhead (0.6𝜇s) be-

comes non-negligible compared to the access latency (3.2𝜇s).

For larger I/O size, we omit the tail latency iou_poll from

the figure since it is significantly larger than the others (4 ms

to 6 ms with access size larger than 128 KB). AeoDriver and
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Figure 11. Multi-thread performance of storage subsystems.
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Figure 12. I/O-intensive task and compute-intensive task co-run.

SPDK saturate the disk write performance with 1MB access

size, while others cannot. In general, AeoDriver outper-

forms POSIX by 1.1× to 1.36× in throughput, 10% to 27% in

median latency, and 10% to 20% in tail latency.

We note that, in some cases, AeoDriver also slightly out-

performs SPDK. We believe that this small improvement is

not inherent, but rather due to reasons such as the memory

alignment in AeoDriver happens to fit the cache better.

The results conform to our analysis §2, AeoDriver outper-

forms kernel storage stack, due to eliminating layering and

kernel trapping overhead, while performing slightly worse

than SPDK, due to the small overhead incurred by interrupt.

Multi-thread performance. Figure 11 shows the multi-

thread performance with 4KB I/O size. AeoDriver and SPDK

scale well, saturating the disk with 8 threads. POSIX and

io_uring have comparable performance. AeoDriver outper-

forms POSIX/io_uring by up to 1.18×, respectively. iou_poll
shows a performance bottleneck with 16 threads.

Summary. Across various I/O sizes and thread counts,

interrupt-based AeoDriver consistently outperforms Linux,

due to direct disk access, and performs similarly to SPDK.

9.3 Coordinated Scheduling with Different Tasks
This subsection evaluates whether Aeolia meets its coordi-

nated scheduling design goals (§3.1). Figure 12 shows 1 and

4 cores running latency-critical (LC) I/O tasks (I/O size: 4KB,
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Figure 13. Latency-task and throughput-task co-run.

I/O depth: 1) with one compute-intensive task (swaptions in

PARSEC, following prior work [53]). Figure 13 shows 1 and

4 cores running LC tasks with one throughput-intensive(TP)

task (I/O size: 64KB, I/O depth: 16).

As expected, the interrupt-based storage stacks perform

better than polling ones. Polling-based methods suffer signif-

icant tail latency (4ms at 1 LC task and 48ms at 12 LC tasks

on a single core), while interrupt-based ones keep low tail

latency. AeoDriver outperforms iou_poll/SPDK by 8.18×
to 291.72× when running LC tasks and compute-intensive

tasks, and 1.11× to 250.5× when running LC and TP tasks.

AeoDriver, like kernel storage stacks, avoids CPU con-

tention, while outperforming them due to direct device ac-

cess. For running I/O tasks and compute-intensive tasks,

with LC tasks increasing, AeoDriver outperforms POSIX and

io_uring by up to 1.28× for I/O tasks and 1.95× for compute-

intensive tasks. For running LC and TP tasks, AeoDriver

achieves throughput comparable to io_uring, while reduc-

ing tail latency by 9.8% to 48.9%. AeoDriver outperforms

POSIX by 1.3× to 3.7× in total throughput.

These resultsmeet our expectations.With polling, the high

tail latency of LC tasks is because the thread is preempted

just after it sends a request, and thus, the thread has to wait

for one or several time slices to handle the sent request.

In addition, with polling, compute tasks and TP tasks suffer

because they get less CPU time due to cycle waste in LC tasks.

Interrupt does not suffer from these limitations, leading to

better performance. Aeolia further outperforms io_uring

and POSIX, since its software overhead is smaller, thereby

achieving lower tail latency while also granting more time

for other tasks (since, for the same amount of I/O, less time

is wasted in the storage stack).

Summary. Aeolia efficiently coordinates scheduling, sig-

nificantly outperforming polling-based stacks with user in-

terrupts and kernel stacks with lower software I/O overhead.

9.4 AeoFS Performance
This subsection evaluates whether Aeolia enables a high-

performance, scalable, and protected file system design. All
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Figure 14. Single-thread performance of evaluated file systems.

the reported results of AeoFS include the overhead of check-

ing metadata integrity and journaling.

Single-thread performance. Figure 14 shows the single-
thread performance of the evaluated file systems. With a 4KB

access size, AeoFS outperforms ext4 and f2fs by up to 12.6×
and 12.8×, respectively, primarily due to direct userspace ac-

cess that avoids the kernel overhead. AeoFS also outperforms

uFS by 3.96× and 4× in read and write operations, respec-

tively, by eliminating the overhead of IPC. With the 2MB

access size, AeoFS outperforms ext4 and f2fs by up to 1.6×.
This is because the increased I/O size reduces the frequency

of kernel layering and scheduling for ext4 and f2fs.

Metadata workloads include opening and stating a file in

a five-level directory, creating an empty file, and deleting

files in a directory. AeoFS outperforms ext4, f2fs, and uFS

by up to 7.1×, 10.6× and 21.3×, respectively. uFS suffers from
performance degradation due to its frequent IPCs.

Multi-thread performance. Figure 15 and Figure 16 show

the multi-thread performance of the evaluated file systems

on data and metadata workloads. For data operations, AeoFS

scales effectively with increasing threads, while all other file

systems suffer from severe scalability bottlenecks. For ex-

ample, under a 2MB write workload with 64 threads, AeoFS

outperforms ext4, f2fs, and uFS by 19.1×, 28.9×, and 8.4×,
respectively. For both 4KB and 2MB access, ext4 and f2fs

suffer from severe scalability issues due to well-known bottle-

necks in the VFS layer [51]. uFS shows limited performance

under 4KB accesses, due to its frequent IPCs.

For metadata scalability, we show key ones in FxMark, in-

cluding that each thread 1 opens a private/random/same file

in five-depth directories (MRPL/MRPM/MRPH); 2 unlinks

an empty file in a private/shared directory (MWUL/MWUM);

3 creates an empty file in a private/shared direc-

tory (MWCL/MWCM), and 4 renames a file to a pri-

vate/shared directory (MWRL, MWRM). We omit the rest

due to space limitations; AeoFS achieves similar scalability

results as the key ones.

Both ext4 and f2fs suffer from severe scalability bottle-

necks due to coarse-grained kernel locking, such as global

locks on the directory cache, inode cache, and directory in-

odes. uFS, by design, delegates all directory-related metadata
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Figure 15. Multi-thread performance of evaluated file systems.
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Figure 16. Metadata scalability of evaluated file systems.

ext4 f2fs AeoFS uFS

4KB append 0.76 GiB/s 0.75 GiB/s 1.12GiB/s 2.74GiB/s

Create 42 kop/s 30 kop/s 58 kop/s 254 kop/s

Remove 115 kop/s 85 kop/s 132 kop/s 186 kop/s

Table 6. Performance of AeoFS when two threads concurrently

update the same file.

operations to a single primary worker (§2.2). As a result, its

throughput does not increase with more threads.

AeoFS scales well across all metadata operations. For ex-

ample, in the case of creating files in private directories,

AeoFS outperforms ext4, f2fs, and uFS by 2.8×, 21.9×, and
31.9×, respectively. AeoFS eventually encounters scalability

bottlenecks. Further analysis reveals that the bottleneck is

the hash rehashing and contention on the dentry hash.

File sharing cost When multiple untrusted applications

concurrently update a file, AeoFS incurs a sharing overhead

due to the need to rebuild the file’s auxiliary state and per-

form an immediate fsync after each operation. We evaluate

this overhead using three workloads. Two applications con-

currently: (1) append 4KB to a file to 1GB, (2) create 10,000

empty files in a shared directory, and (3) delete 10,000 files

from a shared directory. Table 6 presents the results. While

AeoFS still outperforms ext4 and f2fs by up to 1.5× and

1.9×, respectively, it falls behind uFS in all three cases. This

is because uFS, with its centralized design, avoids the syn-

chronization overhead.

Name # Files Avg. file size I/O size (r/w) R/W
Fileserver 10K 1MB 1MB / 1MB 1:2

Webserver 10K 1MB 1MB / 256KB 10:1

Webproxy 50K 512KB 1MB / 16KB 5:1

Varmail 100K 16KB 1MB / 16KB 1:1

Table 7. Filebench workloads configurations
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Figure 18. Filebench results.
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Performance break-
down. Figure 17

presents the perfor-

mance breakdown

of Aeolia running

fio, with each 32KB

write operation being

immediately followed by an fsync to ensure data persistence.

We compare Aeolia with using polling instead of user

interrupt (+poll), using user interrupt but yielding to kernel

idle task (+k_yield), and using kernel interrupt (+k_intr).

The results prove our analysis in §2.1, showing that, with

a suitable scheduling policy, polling offers only little

performance improvements over interrupts. The kernel

scheduler’s suboptimal policy leads to a performance

degradation of 10.6%. The poor performance of the kernel

interrupt is primarily due to the overhead of forwarding

kernel interrupts to userspace, i.e., via eventfd, as previously
reported in [46].

Macrobenchmarks performance. We use Fileserver, Web-

server, Webproxy, and Varmail in Filebench with the con-

figuration shown in Table 7. With our setup, we were unable

to reproduce stable runs of uFS, likely due to configuration

differences. Figure 18 shows the result. AeoFS outperforms

ext4 and f2fs by up to 3.1× and 6.6×, respectively.
To provide a fairer comparison, we further evaluate Ae-

oFS using the configuration parameters provided in the uFS

repository, in which Varmail and Webserver are executed

with smaller workloads. As shown in Figure 19, under these

settings, AeoFS outperforms uFS by up to 1.33×.
We evaluate LevelDB using db_bench with its default con-

figuration. It runs with a single thread and populates the

database with one million key-value pairs. Except for the

Fill100K test, all other tests use the default value size of 100

bytes. As shown in Table 8, AeoFS outperforms ext4, f2fs,
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Figure 19. Filebench results under uFS setups.

Throughput(ops/ms) ext4 f2fs uFS AeoFS

Fill 100K 3.33 3.32 0.73 5.98

Fill sequential 649 540 1,028 1,829

Fill sync 19 19 19 55

Fill random 492 425 339 686

Read random 203 196 372 419

Delete random 537 470 852 1,543

Table 8. LevelDB Throughput

and uFS by up to 2.9×, 3.4×, and 8.2×, respectively. uFS per-
forms poorly in the Fill100K test due to frequent file append

operations. Since uFS exhibits limited performance in meta-

data operations, such workloads incur significant overhead.

Summary. Aeolia enables a file system that achieves low

latency, high throughput, and great multicore scalability.

10 Discussion
Relevance under hardware trends. Existing low-latency

SSDs still exhibit a latency of around 5 𝜇s, making the inter-

rupt overhead imposed by Aeolia insignificant. While the

latency of modern SSDs is expected to decrease, we believe

that the interrupt overhead will follow, making Aeolia stay

relevant. For instance, recent work [21] proposes techniques

that reduce interrupt overhead to less than 250 CPU cycles,

further narrowing the gap between interrupts and polling.

Generality beyond storage. Although Aeolia focuses on

storage, we believe that its techniques are generally applica-

ble to other domains. For example, we have verified that the

techniques presented in §4.2 can deliver NIC interrupts to

userspace. Aeolia’s protection and scheduling techniques

are also applicable to a networking stack. We view Aeolia

as a first step towards a complete kernel-bypassing solution,

potentially leading to a unified userspace I/O stack spanning

both storage and networking.

11 Related Work
High-performance storage stacks. blk-switch [34] is
a recent advancement for kernel storage stacks. It rearchi-

tects the Linux block layer similarly to a networking switch,

introducing per-core multi-egress queues. blk-switch pri-

oritizes scheduling latency-sensitive requests and leverages

fine-grained request steering and coarse-grained application

steering for load balancing, thereby minimizing head-of-line

blocking to achieve both low latency and high throughput.

XRP [71] optimizes the traditional kernel storage stack by

reducing kernel trapping and layering overhead. Specifically,

XRP allows applications to register user-defined storage func-

tions (e.g., index lookups or aggregations), which are exe-

cuted directly inside the NVMe driver. By propagating kernel

state to the driver, XRP preserves file system semantics while

safely bypassing most layers of the kernel storage stack.

Unlike the aforementioned prior work, Aeolia focuses on

userspace interrupt-based stacks with direct device access

and trusted entities, tackling the challenges of achieving

userspace isolation and coordination.

Prior works utilizing user interrupts. xUI [21] extends
existing hardware with a tracked interrupt mechanism that

reduces delivery cost, hardware safepoints for precise pre-

emption, kernel-bypass timers that avoid expensive OSmech-

anisms, and interrupt forwarding that delivers device events

directly to user threads. Much other prior related work fo-

cuses on userspace thread scheduling [31, 33, 37, 46, 47]. For

example, LibPreemptible [46] proposes a high-performance

user-level timer by polling the timestamp counter and using

SENDUIPI as a deadline notification mechanism. Skyloft [37]

is a concurrent work with Aeolia that delivers timer inter-

rupts directly to userspace entities. The techniques to enable

userspace device interrupts in Skyloft and Aeolia differ,

but we believe they are, in essence, identical.

12 Conclusion
This paper presents Aeolia, a userspace interrupt-based

storage stack that achieves high I/O performance with direct

userspace accesses while enabling multiple untrusted tasks

to 1 securely share a disk and 2 efficiently share a CPU

core. Aeolia represents a new point in the design space pre-

viously considered unfeasible. Aeolia is motivated by our

findings that interrupts outperform polling in many aspects,

with only a slight I/O performance disadvantage. The de-

sign of Aeolia overcomes several disadvantages previously

viewed as inherent in userspace storage stacks, including

delivering storage interrupts to userspace, adding trusted

entities for protected sharing, and using sched_ext to coor-

dinate with kernel schedulers. We further design AeoFS, a

high-performance POSIX-like generic file system with ex-

cellent scalability. Our evaluation shows that AeoDriver

performs similarly to SPDK for individual tasks, outperforms

SPDK by 291× upon core sharing. AeoFS consistently outper-

forms other file systems by several orders of magnitude. Our

artifact is publicly available at https://github.com/TELOS-

syslab/Aeolia.
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